News
SpaceX Starship booster heads to launch pad for the fifth time
For the fifth time in five months, SpaceX has transported its most advanced Starship booster prototype from the Starbase factory to the launch pad, setting the stage for another round of testing.
Super Heavy Booster 7 (B7) returned to the factory for the fourth time on August 12th after becoming the first prototype of any kind to perform a static fire engine test while installed on SpaceX’s orbital Starship launch mount. In the days prior, the booster completed two back-to-back static fire tests with one of the 20 Raptor engines installed on the rocket, both of which apparently gave SpaceX enough confidence to prepare for the next phase of testing.
That relatively cautious progress only came after SpaceX attempted to test all 33 of the prototype’s Raptors at once during its first engine test. Whether it was the fault of overzealous managers or executives or a genuine oversight is not clear, but the combined behavior of Super Heavy and the orbital launch pad was not properly characterized before testing began. As a result, the cloud of flammable gas the rocket released during its attempted 33-engine ‘spin-prime’ test found an ignition source and violently exploded on July 11th, causing damage throughout Booster 7’s aft engine section that required several weeks of repairs between July 15th and August 6th.
When the Super Heavy rolled to the pad for the fourth time on August 6th, it was missing all 13 center Raptors, leaving only the outer ring of 20 Raptor Boost engines partially installed for the tests that followed. Thankfully, things went much better on the second try and Booster 7 completed two spin-prime tests with a single Raptor engine, followed by two successful static fire tests on August 9th and 11th. The latter test was the longest Starbase static fire ever (by a factor of ~3) and lasted about 20 seconds, allowing SpaceX to test Booster 7’s autogenous pressurization. That system pressurizes Super Heavy’s tanks by turning small quantities of cryogenic liquid propellant into gas, ensuring that its tanks remain stable as they’re rapidly drained of thousands of tons of propellant.
On August 12th, Booster 7 returned to the factory, where workers installed the rocket’s 13 center engines for the second time. Booster 7 headed back to the orbital launch site (OLS) on August 23rd and the pad’s robotic launch tower used a pair of arms to lift the rocket off its transport stand and place it on the launch mount by the end of the day.
In addition to readying Booster 7 for its next phase of static fire testing, teams of SpaceX workers took advantage of the unplanned lull in testing to modify the orbital launch mount. It’s impossible to know what exactly was done without official confirmation, but it’s likely that SpaceX was attempting to quickly fix the shortcoming(s) that allowed the July 11th explosion to happen. Without a fix, it’s unlikely that SpaceX would want to proceed with plans to ignite large numbers of Raptor engines simultaneously – a series of tests that must be completed before Starship can safely attempt its first orbital launch.


It’s unclear what exactly that fix entails, but it could involve a system to constantly flood the engine section with fire-stopping nitrogen gas or potentially take the shape of a system of vents that will connect to every Raptor engine and remove methane gas before it can turn into flammable clouds.
It’s possible that Booster 7 has returned to the launch pad solely for fit checks or some other basic proof-of-concept testing. It’s also possible that the returns signifies that SpaceX is confident in its quick launch mount fix and ready to restart static fire testing.
As Booster 7 prepares for that next phase of testing, SpaceX may also be ready to restart static fire testing with Starship S24, which paused shortly before Super Heavy returned to the factory. SpaceX appears to be modifying the suborbital launch mount and test stand Ship 24 is installed on, which could explain the lack of ship testing since August 11th. SpaceX has 12-hour test windows tentatively scheduled on August 24th and 25th, either of which could be used to test either or both prototypes.
If all goes to plan, Ship 24 and Booster 7 will eventually complete all the qualification testing SpaceX can throw at them and be ready to support Starship’s first orbital launch attempt sometime before the end of 2022.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
