Connect with us

News

SpaceX Starship passed “cryo proof” test for the first time and here’s what’s next

A SpaceX Starship rocket just passed a critical "cryo proof" test for the first time. (NASASpaceflight - bocachicagal)

Published

on

Elon Musk says a SpaceX Starship prototype has passed a critical “cryo proof” test for the first time, opening the door for the rocket to move on to even bigger tests.

Late on April 26th, SpaceX’s South Texas team (and possibly a console team in California) readied the fourth full-scale Starship prototype (SN4) for its second major test. Known as a cryogenic proof test, it began less than 24 hours after the rocket completed a room-temperature gas pressure test to check for leaks and verify that the pressure vessel was sound. Musk quickly confirmed that Starship SN4 passed through that “ambient proof test” without issue.

For the cryo proof test, room-temperature nitrogen gas was replaced with ultra-cold liquid nitrogen, serving as a chemically neutral (i.e. non-explosive) simulant for Starship’s liquid oxygen and methane propellant. After a few hours of partial loading and offloading cycles meant to ensure that Starship’s valves and propellant supply hardware was working as intended, SpaceX controllers fully filled the rocket with some ~1000 metric tons (2.2 million lb) of liquid nitrogen. Once full, a hydraulic ram setup was activated to exert forces akin to Raptor engines operating at full thrust. After several prior failures, Starship SN4 thus became the first to survive the ordeal and graduate into the next stage of testing.

According to CEO Elon Musk, that next step will be a static fire test with a lone Raptor engine installed. Able to produce at least 200 metric tons of thrust (~450,000 lbf) at full throttle, Raptor is an exceptionally efficient methalox (methane/oxygen) rocket engine designed by SpaceX to power Starship and its Super Heavy booster. Methane and oxygen was chosen in large part because of the relative potential ease of its extraction and refinement on Mars.

Advertisement
-->

Per Musk, that static fire could occur within the next six or so days, meaning that SpaceX will likely install a functional Raptor engine on a full-scale Starship for the first time ever within the next day or two. Before a static fire can be performed, though, another significant test or two will have to be completed.

Known as a wet dress rehearsal (WDR), the first of those tests will be similar to April 26th’s cryo proof but with the neutral liquid nitrogen placed by real liquid oxygen and methane propellant. This is much riskier than the cryo proof in the sense that if a tank failure were to occur or a fire to accidentally start, 1000+ tons of highly-pressurized propellant could easily create a massive explosion and fireball, destroying or damaging much of the surrounding pad equipment. The WDR could potentially be rolled into another Raptor engine test that would verify its preburner performance.

Pictured on April 4th, one of these three Raptors will likely be installed on Starship SN4 just a day or two from now. (Elon Musk)

To operate, Raptors first take liquid oxygen and liquid methane into separate parts of the engine and rapidly heat them to turn them into high temperature gas. Those preburners then send that hot gas to separate turbopumps that spin up and allow the engines to keep supplying themselves with large quantities of propellant, followed by the process of actually igniting the engine itself with a complex series of blowtorches.

If the preburner and turbopump spin-up test is successful, SpaceX can then move on to the actual static fire. Featuring a single Raptor engine, Starship SN4 will hopefully become the first full-scale rocket to safely operate a flight-grade engine since SpaceX began full-scale tests in November 2019. If successful, that static fire could pave the way for Starship SN4 to perform a Starhopper-style 150m (500 ft) hop test as early as May 2020 – a hop that would be powered by a single Raptor engine according to Musk.

Starship SN5 will reportedly be the first ship to both have a nosecone installed and three Raptor engines installed if SN4 has a very successful few weeks and that new ship is perhaps just 5-10 days from being fully assembled. In short, things are about to get very busy and very exciting at SpaceX’s South Texas Starship factory and launch pad.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading