Connect with us

News

SpaceX’s Starship explosion explained by Elon Musk

The burning wreckage of Starship SN4, May 29th. (SPadre)

Published

on

Shortly after a briefing following SpaceX’s flawless astronaut launch debut, CEO Elon Musk casually revealed the best explanation yet for why a Starship prototype violently exploded during testing on May 29th.

On that fated Saturday, SpaceX successfully completed the fifth static fire of a Raptor engine installed on a full-scale Starship prototype, preceded by about an hour and a half of vehicle checks and propellant loading. Unfortunately, around a minute after Raptor shut down, what was quickly identified as liquid methane began spurting out of a specific section at the base of Starship, rapidly creating a massive cloud as the cryogenic propellant boiled and turned into gas. The specific source is unclear but moments later, something under Starship SN4 provided the shock or spark needed to ignite the expanding fire hazard, producing a spectacularly large and violent explosion.

Unsurprisingly, the accidental fuel-air explosion that was created obliterated Starship SN4 in the blink of an eye, shredding its lower (liquid oxygen) tank into steel confetti and immediately breaching the upper (liquid methane) tank, which fell to the ground and subsequently exploded again. The launch mount Starship was staged on was also damaged beyond repair and has been fully dismantled and scrapped in the two days since the anomaly. Thankfully, however, SpaceX already has replacement mounts and ships well on their way to carrying Starship SN4’s torch forward and Elon Musk already seems to understand what caused the prototype’s demise.

Shortly after a post-launch briefing celebrating and discussing SpaceX’s inaugural astronaut launch on May 30th, Reuters reporter Joey Roulette was able to ask Musk about Starship SN4’s spectacular demise the day prior. The SpaceX CEO was quoted saying that “what we thought was going to be a minor test of a quick disconnect ended up being a big problem”, confirming suspicions based on careful analysis of public views of the explosion that it was caused by issues with Starship’s ground support equipment (GSE).

Starhopper’s quick-disconnect umbilical panel is pictured here in May 2019. Starship SN4 used a similar mechanism, although the plumbing is now located inside the vehicle’s circumference. (NASASpaceflight – bocachicagal)

In Musk’s statement, “quick disconnect” (QD) refers to an umbilical port that connects a launch vehicle to GSE, enabling the loading and offloading of propellant and fluids, clamping down the rocket, and providing a wired telemetry and communications link for ground controllers. QDs must perform all those tasks while also being able to rapidly release and disconnect, allowing the rocket to lift off while still protecting its sensitive ports for ease of reuse.

In theory, Starship’s quick-disconnect umbilical panel is even more complex, as it will have to simultaneously enable the ship to be fueled and controlled while sitting on top of a Super Heavy booster and permit in-orbit docking and refueling. Given that Starships are currently being tested independently on spartan launch mounts, it’s unclear if the current generation of prototypes has been outfitted with advanced QD panels. More likely, Musk was referring to a test of a less advanced QD panel similar to the rough version used on Starhopper last year, and SpaceX simply wanted to test its ability to disconnect and reconnect to Starship on command.

Advertisement
SpaceX’s existing Starship launch mount was heavily damaged by SN4’s explosion and has since been fully dismantled. (NASASpaceflight – bocachicagal)
Starship SN4’s remains have already been cleared from the pad. (NASASpaceflight – bocachicagal)

If that’s the case, the likeliest explanation for SN4’s explosion is that that quick disconnect was unable to fully reconnect after the test, resulting in a leak from the liquid methane port when SpaceX began to detank the rocket. Instead of the highly-pressurized fluid flowing smoothly back to ground storage tanks, the liquid methane sprayed wildly, akin to the effect one might observe when attempting to block off an active water source with an open palm.

Work on a second launch mount was already ongoing when Starship SN4 exploded on May 29th. (NASASpaceflight – bocachicagal)
Starship SN5 and SN6 are simultaneously being assembled in SpaceX’s new vertical assembly building (VAB). (NASASpaceflight – bocachicagal)

Compared to the many possible ways a fueled Starship could fail, a propellant leak started by a faulty umbilical panel is about as convenient as they come. Starship SN4 may have been violently destroyed as a result, turning a relatively small error into exceptionally painful lesson but SpaceX has already had some success building full-scale prototypes at an almost unbelievably low cost – likely less than $10M apiece. Starship SN5 appears to be just shy of ready to take SN4’s place on the launch mount, although SpaceX will have to build an entirely new launch mount before it can resume testing.

At the same time, Starship SN5’s successor – SN6 – is just one stacking event away from reaching a level of completion similar to SN4 and SN5. All told, Starship SN4’s demise is just another part of the process of developing a new kind of rocket by building and testing hardware – failure can be a valuable tool when managed properly. Based on past observations, SpaceX could be ready to continue testing (and hopefully flying) Starship prototypes before the end of the month.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla posts Optimus’ most impressive video demonstration yet

The humanoid robot was able to complete all the tasks through a single neural network.

Published

on

Credit: Tesla Optimus/X

When Elon Musk spoke with CNBC’s David Faber in an interview at Giga Texas, he reiterated the idea that Optimus will be one of Tesla’s biggest products. Seemingly to highlight the CEO’s point, the official Tesla Optimus account on social media platform X shared what could very well be the most impressive demonstration of the humanoid robot’s capabilities to date.

Optimus’ Newest Demonstration

In its recent video demonstration, the Tesla Optimus team featured the humanoid robot performing a variety of tasks. These include household chores such as throwing the trash, using a broom and a vacuum cleaner, tearing a paper towel, stirring a pot of food, opening a cabinet, and closing a curtain, among others. The video also featured Optimus picking up a Model X fore link and placing it on a dolly.

What was most notable in the Tesla Optimus team’s demonstration was the fact that the humanoid robot was able to complete all the tasks through a single neural network. The robot’s actions were also learned directly from Optimus being fed data from first-person videos of humans performing similar tasks. This system should pave the way for Optimus to learn and refine new skills quickly and reliably.

Tesla VP for Optimus Shares Insight

In a follow-up post on X, Tesla Vice President of Optimus (Tesla Bot) Milan Kovac stated that one of the team’s goals is to have Optimus learn straight from internet videos of humans performing tasks, including footage captured in third person or by random cameras.

“We recently had a significant breakthrough along that journey, and can now transfer a big chunk of the learning directly from human videos to the bots (1st person views for now). This allows us to bootstrap new tasks much faster compared to teleoperated bot data alone (heavier operationally).

Advertisement

“Many new skills are emerging through this process, are called for via natural language (voice/text), and are run by a single neural network on the bot (multi-tasking). Next: expand to 3rd person video transfer (aka random internet), and push reliability via self-play (RL) in the real-, and/or synthetic- (sim / world models) world,” Kovac wrote in his post on X.

Continue Reading

News

Starship Flight 9 nears as SpaceX’s Starbase becomes a Texan City

SpaceX’s launch site is officially incorporated as Starbase, TX. Starship Flight 9 could launch on May 27, 2025. 

Published

on

spacex-starship-flight-9-starbase-city
(Credit: Jenny Hautmann/Wikimedia Commons)

SpaceX’s Starbase is officially incorporated as a city in Texas, aligning with preparations for Starship Flight 9. The newly formed city in Cameron County serves as the heart of SpaceX’s Starship program.

Starbase City spans 1.5 square miles, encompassing SpaceX’s launch facility and company-owned land. A near-unanimous vote by residents, who were mostly SpaceX employees, led to its incorporation. SpaceX’s Vice President of Test and Launch, Bobby Peden, was elected mayor of Starbase. The new Texas city also has two SpaceX employees as commissioners. All Starbase officials will serve two-year terms unless extended to four by voters.

As the new city takes shape, SpaceX is preparing for the Starship Flight 9 launch, which is tentatively scheduled for May 27, 2025, at 6:30 PM CDT from Starbase, Texas.

SpaceX secured Federal Aviation Administration (FAA) approval for up to 25 annual Starship and Super Heavy launches from the site. However, the FAA emphasized that “there are other licensing requirements still to be completed,” including policy, safety, and environmental reviews.

Advertisement

On May 15, the FAA noted SpaceX updated its launch license for Flight 9, but added: “SpaceX may not launch until the FAA either closes the Starship Flight 8 mishap investigation or makes a return to flight determination. The FAA is reviewing the mishap report SpaceX submitted on May 14.”

Proposed Texas legislation could empower Starbase officials to close local highways and restrict Boca Chica Beach access during launches. Cameron County Judge Eddie Trevino, Jr., opposes the Texas legislation, insisting beach access remain under county control. This tension highlights the balance between SpaceX’s ambitions and local interests.

Starbase’s incorporation strengthens SpaceX’s operational base as it gears up for Starship Flight 9, a critical step in its mission to revolutionize space travel. With growing infrastructure and regulatory hurdles in focus, Starbase is poised to become a cornerstone of SpaceX’s vision, blending community development with cutting-edge aerospace innovation.

Advertisement
Continue Reading

News

The Boring Company accelerates Vegas Loop expansion plans

The Boring Company clears fire safety delays, paving the way to accelerating its Vegas Loop expansion plans.

Published

on

Credit: The Boring Company/X

After overcoming fire safety hurdles, the Boring Company is accelerating its Vegas Loop expansion. The project’s progress signals a transformative boost for Sin City’s transportation and tourism.

Elon Musk’s tunneling company, along with The Las Vegas Convention and Visitors Authority (LVCVA) and Clark County, resolved fire safety concerns that delayed new stations.

“It’s new. It’s taken a little time to figure out what the standard should be,” said Steve Hill, LVCVA President and CEO, during last week’s board meeting. “We’ve gotten there. We’re excited about that. We’re ready to expand further, faster, than we have.”

Last month, the company submitted permits for tunnel extensions connecting Encore to a parcel of land owned by Wynn and Caesars Palace. The three tunnels are valued at $600,000 based on country records.

Plans for a Tropicana Loop are also advancing, linking UNLV to MGM Grand, T-Mobile Arena, Allegiant Stadium, Mandalay Bay, and the upcoming Athletics’ ballpark. Downtown extensions from the convention center to the Strat, Fremont Street Experience, and Circa’s Garage Mahal are also in the permitting process.

Advertisement

“Those are all in process,” Hill noted. “We’ve got machines that are available to be put in the ground. I think we’ve reached a framework for how these projects are going to work and how they’ll be permitted from a safety standpoint, as well as a building standpoint.”

The Boring Company has six boring machines, with three currently active in Las Vegas. Last week, TBC announced that it successfully mined continuously in a Zero-People-in-Tunnel (ZPIT) configuration, enabling it to build more tunnels faster, safer, and at a more affordable rate.

Tunneling under Paradise Road is underway as The Boring Company works on the University Center Loop. The University Center Loop is expected to connect to the Las Vegas Convention Center within two months, linking to the Westgate tunnel. The full Vegas Loop will span 104 stations and 68 miles. Even though The Boring Company’s tunnel network in Las Vegas isn’t nearly finished, it has already become a key attraction in the city.

“It’s such a great attraction for shows that are looking at this building (convention center) and we’re going to be connected to everybody in town,” Hill said. “It’s a real difference-maker.”

A few Vegas Loop stations are already operational, including those connected to Resorts World, Westgate, Encore, and all the Las Vegas Convention Center Loop stations. The Downtown Loop, which connects to the downtown area, and the Riviera Station, the hub that leads to Resorts World with Westgate destinations, are also operational.

Advertisement

As The Boring Company accelerates the Vegas Loop, its tunnels are poised to redefine mobility and tourism in Las Vegas, blending cutting-edge technology with practical urban solutions.

Continue Reading

Trending