Connect with us

News

SpaceX’s Starship factory is churning out steel rockets faster than ever

SpaceX has already started work on its seventh Starship prototype, meaning that the company is currently building three ships simultaneously. (NASASpaceflight - bocachicagal)

Published

on

SpaceX’s South Texas Starship factory is churning out steel rocket hardware faster than ever before according to photos of yet another prototype already in the works.

At the same time as SpaceX works around the clock to test SN4 and prepare the ship for what will be the first flight of a full-scale Starship prototype, the company is building not one; not two; but three additional prototypes. A confirmation that a third Starship was being simultaneously manufactured in South Texas came on May 25th when local Boca Chica resident and observer Mary (bocachicagal) captured a photo of a pair of stacked steel rings rather conspicuously labeled “SN7”.

While it’s possible that “SN7” is just a coincidence, it’s far more likely that it refers to Starship serial number 7 (SN7), set to be the seventh full-scale prototype built by SpaceX. The apparent start of SN7’s steel ring assembly process some two weeks ago also suggests that no less than several other rings are likely being mated in one or more of SpaceX’s three main manufacturing tents or a much taller windbreak structure. In fact, SpaceX is building Starship prototypes so quickly that the company is actively assembling a second launch mount, suggesting that two Starships could soon be tested more or less simultaneously without stepping on each other’s steel toes.

Starship SN4 continues to track towards a critical flight test as of May 23rd. (NASASpaceflight – bocachicagal)
SpaceX’s Starship factory is currently studded with dozens upon dozens of steel rings and Starship sections. (NASASpaceflight – bocachicagal)

The most impressive aspect of SN7’s appearance, however, is the fact that SpaceX is already in the late stages of stacking Starship SN5 and begun preparing to stack Starship SN6 directly beside it just a few days ago. Based on labels attached to the side of a new steel nosecone section rolled out of SpaceX’s tent factory a few days ago, Starship SN5 will likely become the first full-scale Starship to reach its full height in a permanent, functional fashion. Back in October 2019, SpaceX did technically stack Starship Mk1 to its full height for a few weeks, but the ship’s nose section was never permanently attached and really only served as a pathfinder and full-scale mockup.

The entirety of Starship SN5’s fuselage structure is visible here in one frame on May 21st. (NASASpaceflight – bocachicagal)

Starship Mk1 ultimately failed prematurely during its first major cryogenic pressure test in November 2019, bursting well before it reached the tank pressures needed for low-velocity hop tests (let alone orbital flight). In the sixth months since, SpaceX refocused its resources and spent much of the time dramatically upgrading its South Texas Starship production facilities and methods. In a rapid-fire series of tests of custom-built Starship tanks, SpaceX quickly proved that those improved methods could produce steel tanks more than capable of surviving pressures of ~8.5 bar (~125 psi) and beyond.

More recently, Starship SN4 – a full-scale prototype with two propellant tanks and three tank domes – passed a ~7.5 bar (~110 psi) cryogenic pressure test with flying colors, just shy of fully validating the smaller tank tests that made it possible. According to CEO Elon Musk, ~8.5 bar is enough to perform orbital launches with the ~40% safety margin preferred for human spaceflight, while 7.5 bar meets the minimum needed for Starship to perform uncrewed orbital launches with a ~25% safety margin.

Starship heads to orbit atop a Super Heavy booster. (SpaceX)

In other words, SpaceX isn’t simply churning out low-fidelity prototypes – the ships that are being mass-produced are of a high enough quality to be qualified for orbital-class launches. Of course, the physical structure of Starship is just one of many technologies that need to work in harmony for successful orbital flights, many of which need to pass their own challenging tests to be declared ready for launch, but it’s still undeniably impressive that SpaceX is already building complete Starship fuselages in a matter of weeks.

In fact, given that Starship SN4 could perform the first hop test and that SN5 could be assigned to the first high-altitude (3-20+ km) flight tests, there is definitely a chance, however minimal, that Starship SN6 or SN7 could eventually be upgraded for the system’s inaugural orbital launch attempt. Regardless, it’s safe to say that the next several weeks are going to be jam-packed with numerous Starship production and test milestones.

Advertisement
-->

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk gives nod to SpaceX’s massive, previously impossible feat

It was the booster’s 30th flight, a scenario that seemed impossible before SpaceX became a dominant force in spaceflight. 

Published

on

Credit: SpaceX/X

Elon Musk gave a nod to one of SpaceX’s most underrated feats today. Following the successful launch of the Transporter-15 mission, SpaceX seamlessly landed another Falcon 9 booster on a droneship in the middle of the ocean. 

It was the booster’s 30th flight, a scenario that seemed impossible before SpaceX became a dominant force in spaceflight. 

Elon Musk celebrates a veteran Falcon 9 booster’s feat

SpaceX completed another major milestone for its Smallsat Rideshare program on Friday, successfully launching and deploying 140 spacecraft aboard a Falcon 9 from Vandenberg Space Force Base. The mission, known as Transporter-15, lifted off two days later than planned after a scrub attributed to a ground systems issue, according to SpaceFlight Now. SpaceX confirmed that all payloads designed to separate from the rocket were deployed as planned.

The Falcon 9 used for this flight was booster B1071, one of SpaceX’s most heavily flown rockets. With its 30th mission completed, it becomes the second booster in SpaceX’s fleet to reach that milestone. B1071’s manifest includes five National Reconnaissance Office missions, NASA’s SWOT satellite, and several previous rideshare deployments, among others. Elon Musk celebrated the milestone on X, writing “30 flights of the same rocket!” in his post. 

Skeptics once dismissed reusability as unfeasible

While rocket landings are routine for SpaceX today, that was not always the case. Industry veterans previously questioned whether reusable rockets could ever achieve meaningful cost savings or operational reliability, often citing the Space Shuttle’s partial reusability as evidence of failure. 

Advertisement
-->

In 2016, Orbital ATK’s Ben Goldberg argued during a panel that even if rockets could be reusable, they do not make a lot of sense. He took issue with Elon Musk’s claims at the time, Ars Technica reported, particularly when the SpaceX founder stated that fuel costs account for just a fraction of launch costs. 

Goldberg noted that at most, studies showed only a 30% cost reduction for low-Earth orbit missions by using a reusable rocket. “You’re not going to get 100-fold. These numbers aren’t going to change by an order of magnitude. They’re just not. That’s the state of where we are today,” he said. 

Former NASA official Dan Dumbacher, who oversaw the Space Launch System, expressed similar doubts in 2014, implying that if NASA couldn’t make full reusability viable, private firms like SpaceX faced steep odds.

Continue Reading

News

Tesla AI and Autopilot VP hints that Robovan will have RV conversions

Tesla’s vice president of AI and Autopilot software, Ashok Elluswamy, hinted at the linitiative in a reply to Y Combinator CEO Garry Tan.

Published

on

(Credit: Tesla)

It appears that Tesla is indeed considering an RV in its future pipeline, though the vehicle that would be converted for the purpose would be quite interesting. This is, at least, as per recent comments by a Tesla executive on social media platform X.

Robovan as an RV

Tesla’s vice president of AI and Autopilot software, Ashok Elluswamy, hinted at the linitiative in a reply to Y Combinator CEO Garry Tan, who called for a startup to build RVs with Full Self-Driving capabilities. In his reply, Elluswamy simply stated “On it,” while including a photo of Tesla’s autonomous 20-seat people mover. 

Tesla unveiled the Robovan in October 2024 at the “We, Robot” event. The vehicle lacks a steering wheel and features a low floor for spacious interiors. The vehicle, while eclipsed by the Cybercab in news headlines, still captured the imagination of many, as hinted at by X users posting AI-generated images of Robovan RV conversions with beds, kitchens and panoramic windows on social media platforms. One such render by Tesla enthusiast Mark Anthony reached over 300,000 views on X.

Elon Musk on the Robovan

Elon Musk addressed the Robovan’s low profile in October 2024, stating the van uses automatic load-leveling suspension that raises or lowers based on road conditions. The system maintains the futuristic look while handling uneven pavement, Musk wrote on X. The CEO also stated that the Robovan is designed to be very airy inside, which would be great for an RV.

“The view from the inside is one of extreme openness, with visibility in all directions, although it may appear otherwise from the outside. The unusually low ground clearance is achieved by having an automatic load-leveling suspension that raises or lowers, based on smooth or bumpy road conditions,” Musk stated. 

Advertisement
-->

Elluswamy’s response on X suggests that Tesla is considering a Robovan RV conversion, though it would be interesting to see how the company will make the vehicle capable of reaching campsites. The Robovan has a very low ground clearance, after all, and campsites tend to be in unpaved areas. 

Continue Reading

News

Tesla tinkering with Speed Profiles on FSD v14.2.1 has gone too far

Published

on

Credit: Tesla

Tesla recently released Full Self-Driving (FSD) v14.2.1, its latest version, but the tinkering with Speed Profiles has perhaps gone too far.

We try to keep it as real as possible with Full Self-Driving operation, and we are well aware that with the new versions, some things get better, but others get worse. It is all part of the process with FSD, and refinements are usually available within a week or so.

However, the latest v14.2.1 update has brought out some major complaints with Speed Profiles, at least on my end. It seems the adjustments have gone a tad too far, and there is a sizeable gap between Profiles that are next to one another.

The gap is so large that changing between them presents a bit of an unwelcome and drastic reduction in speed, which is perhaps a tad too fast for my liking. Additionally, Speed Profiles seem to have a set Speed Limit offset, which makes it less functional in live traffic situations.

Before I go any further, I’d like to remind everyone reading this that what I am about to write is purely my opinion; it is not right or wrong, or how everyone might feel. I am well aware that driving behaviors are widely subjective; what is acceptable to one might be unacceptable to another.

Speed Profiles are ‘Set’ to a Speed

From what I’ve experienced on v14.2.1, Tesla has chosen to go with somewhat of a preset max speed for each Speed Profile. With ‘Hurry,’ it appears to be 10 MPH over the speed limit, and it will not go even a single MPH faster than that. In a 55 MPH zone, it will only travel 65 MPH. Meanwhile, ‘Standard’ seems to be fixed at between 4-5 MPH over.

This is sort of a tough thing to have fixed, in my opinion. The speed at which the car travels should not be fixed; it should be more dependent on how traffic around it is traveling.

It almost seems as if the Speed Profile chosen should be more of a Behavior Profile. Standard should perform passes only to traffic that is slower than the traffic. If traffic is traveling at 75 MPH in a 65 MPH zone, the car should travel at 75 MPH. It should pass traffic that travels slower than this.

Hurry should be more willing to overtake cars, travel more than 10 MPH over the limit, and act as if someone is in a hurry to get somewhere, hence the name. Setting strict limits on how fast it will travel seems to be a real damper on its capabilities. It did much better in previous versions.

Some Speed Profiles are Too Distant from Others

This is specifically about Hurry and Mad Max, which are neighbors in the Speed Profiles menu. Hurry will only go 10 MPH over the limit, but Mad Max will travel similarly to traffic around it. I’ve seen some people say Mad Max is too slow, but I have not had that opinion when using it.

In a 55 MPH zone during Black Friday and Small Business Saturday, it is not unusual for traffic around me to travel in the low to mid-80s. Mad Max was very suitable for some traffic situations yesterday, especially as cars were traveling very fast. However, sometimes it required me to “gear down” into Hurry, especially as, at times, it would try to pass slower traffic in the right lane, a move I’m not super fond of.

We had some readers also mention this to us:

After switching from Mad Max to Hurry, there is a very abrupt drop in speed. It is not violent by any means, but it does shift your body forward, and it seems as if it is a tad drastic and could be refined further.

Continue Reading