Connect with us

News

A SpaceX Starship rocket could take to the sky for the first time later this week

SpaceX has scrubbed a Starship static fire attempt for the third time as evidence grows that the ship's first flight could come as early as this week. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has scrubbed its latest Starship static fire test for the third time since Friday but if another attempt succeeds within the next few days, a full-scale Starship prototype could lift off for the first time later this week.

SpaceX has attempted to perform a Starship static fire every day for the last three days without any luck, foiled by what must be mild technical issues and some extreme South Texas weather. That static fire – set to be Starship serial number 4’s (SN4) third – is required because SpaceX chose to replace the rocket’s installed Raptor engine (SN18) around 10 days ago after completing two successful tests on May 4th and 5th. Installed a few days after SN18 was removed, Starship and Raptor SN20 must now perform their own integrated static fire to ensure the complex systems are working properly.

Since SN4’s last test, SpaceX teams have been swarming the Starship prototype day and night, installing new COPVs (composite overwrapped pressure vessels; used to store high-pressure gas), new plumbing, and more. The specific purposes of all those in-situ changes can only be speculated at but what is clear is that SpaceX is preparing Starship SN4 for the first attempted flight test of a full-scale prototype, following in the footsteps of Starhopper’s bizarre but successful July and August 2019 hops. As SN4’s third Raptor static fire has slipped, though, so has that flight test. While the FAA has yet to officially publish a license for the 150m (~500 ft) Starship hop, NOTAMs (Notices to Airmen) filed recently suggest that that license and hop could come any day now.

Most recently, a NOTAM was filed on May 18th for what is likely Starship’s 150m hop test on Thursday, May 21st. Filed before SN4’s May 18th static fire test was aborted twice, that proposed May 21st hop test will almost certainly be delayed at least as long as the static fire that needs to precede it and is also dependent upon the FAA officially licensing the flight. The fact that NOTAMs are being filed for that flight strongly suggests that SpaceX and the FAA or in the late stages of hammering out a license, a process that can often involve a great deal of back-and-forth and compromise for experimental rocket launches.

Regardless, if or when Starship SN4 finally manages to fire up its new Raptor engine, it could be just a matter of days after that SpaceX attempts the first true Starship flight test. If everything goes according to plan, the ~30m (~100 ft) tall stainless steel rocket will lift off under the power of a single asymmetrically installed Raptor engine, capable of producing up to 200 metric tons (~450,000 lbf) of thrust with cryogenic liquid methane and oxygen propellant.

Advertisement
-->
Starship SN4 is pictured beside the now-retired Starhopper test article on April 23rd. (NASASpaceflight – bocachicagal)

After lifting off from its ad-hoc South Texas launch mount, Starship SN4 will attempt to reach a peak altitude of 150m (~500 ft) and descend back down for a soft landing on an adjacent concrete pad, just like Starhopper did around nine months ago. A lot could go wrong: aside from using steel more than three times thinner than Starhopper’s, Starship SN4 will also be debuting an entirely new kind of landing leg, will be flying with asymmetric thrust, and will likely be using autogenous pressurization — all new challenges for SpaceX.

Nevertheless, there are also reasons for confidence. SpaceX has already successfully pressurized Starship SN4 all the way to 7.5 bar (~110 psi, sufficient for uncrewed orbital flight), performed multiple wet dress rehearsals and two Raptor static fire tests, and even tested what appears to be a new kind of cold gas thruster needed for roll control. Most importantly, even if Starship SN4 is destroyed during its next static fire or inaugural flight attempt, Starship SN5 is nearly at the same stage of completion and should be ready to take the reins almost immediately after the potential demise of its predecessor. With Crew Dragon’s inaugural NASA astronaut launch scheduled on May 27th, the rest of the month is set to be quite the event.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading