News
SpaceX’s Starship prototype proceeds at breakneck pace towards hop tests
Well illustrated by recent drone photos of SpaceX’s up-and-coming Boca Chica, Texas facilities, dozens of SpaceXers and local contractors have congregated at the company’s Starship prototype work site over the last few weeks, progressing it from an empty tent and a collection of parts to a handful of large assemblies for what appears to be the first full-scale Starship hopper.
Much like Falcon 9’s Grasshopper and F9R (Reusable) hop test articles, this ungainly Starship hopper – standing an impressive 9m (29.5 ft) wide and ~40m (131 ft) tall – appears all but guaranteed to become the first integrated BFR hardware to take flight, hopefully supporting a productive series of low-altitude hop tests from a roughly-prepared South Texas pad.
https://twitter.com/austinbarnard45/status/1079402956603248641
Since SpaceX CEO Elon Musk took to Twitter to provide a number of updates on and photos of the company’s dramatically refigured approach to BFR (now Starship and Super Heavy), employees and local contractors have been working almost around the clock to keep building the first full-scale, integrated Starship test article. To be dedicated to low-speed, low-altitude hop tests, Starhopper has been a spectacle and scandal from the start thanks to an unshakable visual aesthetic reminiscent of 1950s science fiction or an elaborate and slow-burning April Fool’s prank.

As of now, several dozen tweets and tweet replies from Musk in just the last week offer extensive support for the unorthodox new design – replacing carbon composites and an ablative heat shield for a new stainless steel alloy and liquid cooling – while also firmly indicating that the object taking shape in South Texas really is a Starship hopper that will eventually take to the skies on a pillar of Raptor engine exhaust. Those inaugural hop tests could apparently begin as early as March or April 2019. Given Musk’s statements, it seems that this highly unusual Starship hop test program simply cannot be judged accurately by its cover, at least not easily.
Even for SpaceX, building an aerospace-grade prototype of a massive orbital spaceship outdoors – adjacent to soggy Texan marshland and Gulf of Mexico sea spray, no less – is utterly and completely unexpected, especially in an industry where rocket hardware is routinely fabricated indoors, if not in medical-grade clean rooms. The most likely explanation here is that we are seeing something more akin to the aeroshell or cocoon of a Starship hopper, with a huge amount of thought and debate ultimately landing on this oddity as the fastest, most affordable, and most data-rich path forward for full-scale BFR testing.
- A welder can be seen attaching a patch layer over each panel layer gap on Dec. 30. (NASASpaceflight /u/bocachicagal)
- A lifting sling is seen here attached to Starhopper’s bottom half prior to its first lift and move. (NASASpaceflight /u/bocachicagal)
- Before the move… (NASASpaceflight /u/bocachicagal)
- And after the move. (NASASpaceflight /u/bocachicagal)
- The leftmost mockup was stitched together from NASASpaceflight user bocachicagal’s on-site photos by Thomas Lacroix. The TL;DR of this is that Starhopper appears to be a solid three-quarters the height of a full 2018 BFS. (SpaceX, NASASpaceflight, Thomas Lacroix)
In this speculative instance, the sensitive liquid methane and liquid oxygen propellant tanks – as well as Starhopper’s triple-Raptor thrust structure and spaghetti plumbing – would be fabricated in SpaceX’s Hawthorne, CA factory or McGregor, TX test facilities before being shipped to Boca Chica for integration with the large structures already in work there. Those Raptors, propellant tanks, and a general program of fit-and-finish optimizations are next on the list of significant Starhopper-related events expected to occur within the next several months.
The latter task has already begun, showing up in the form of sheet metal refinement by way of essentially stitching together loose panel gaps between and within sheet-covered sections of Starhopper’s shiny silver nose. SpaceX workers also conducted the first move of the fully-integrated hopper’s base section, previously built and then sat atop a ready-made concrete stand that may or may not have come from a water tank design. While the move was slight, the base and nose sections are now roughly side-by-side along the apron of SpaceX’s temporary tent, where a third Starhopper hull segment is being built up.
2019 is going to be wild and March/April simply cannot come soon enough.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.
News
Ferrari Luce EV: Italian supercar maker reveals interior and interface design
Ferrari, the Italian supercar maker, has revealed the name, interior, and interface design of its first-ever electric vehicle project, the Luce, initiating a new chapter in the rich history of the company’s automotive books.
This is the first time Ferrari has revealed such intimate details regarding its introductory EV offering, which has been in the realm of possibility for several years.
As more companies continue to take on EV projects, and some recede from them, supercar companies like Ferrari and Lamborghini are preparing to offer electric powertrains, offering super-fast performance and a new era of speed and acceleration.
Luce – a New Chapter in Ferrari
The company said that the name Luce is “more than a name. It is a vision.” Instead of looking at its first EV offering as a means to enter a new era of design, engineering, and imagination. The company did not want to compromise any of its reputation, high standards, or performance with this new project. It sees it as simply a page turn, and not the closing of a book:
“This new naming strategy reflects how the Ferrari Luce marks a significant addition to the Prancing Horse’s line-up, embodying the seamless expression of tradition and innovation. With its cutting-edge technology, unique design, and best-in-class driving thrills, it unites Ferrari’s racing heritage, the timeless spirit of its sports cars, and the evolving reality of contemporary lifestyles. It testifies to Ferrari’s determination to go beyond expectations: to imagine the future, and to dare. Because leading means illuminating the path ahead – and Luce embodies that mindset.”
Ferrari Luce Design
Ferrari collaborated with LoveFrom, a creative collective founded by Sir Jony Ive and Marc Newson. The pair has been working with Ferrari for five years on the Luce design; everything from materials, ergonomics, interface, and user experience has been designed by the two entities.
The big focus with the interior was to offer “a first, tangible insight into the design philosophy…where innovation meets craftsmanship and cutting-edge design. The team focused on perfecting and refining every solution to its purest form — not to reinvent what already works, but to create a new, carefully considered expression of Ferrari.”
RELATED:
Ferrari CEO compliments Tesla for shaking up the automotive industry
The company also said:
“Ultimately, the design of the Ferrari Luce’s interior is a synthesis of meticulous craftsmanship, respect for tradition, and thoughtful innovation. It offers a new choice for Ferrari enthusiasts – one that honours the past while embracing the future, and exemplifies the brand’s enduring commitment to quality, performance, and cultural significance.”
The appearance of the elements that make up the interior are both an ode to past designs, like the steering wheel, which is a reinterpretation of the iconic 1950s and 1960s wooden three-spoke Nardi wheel, and fresh, new designs, which aim to show the innovation Ferrari is adopting with this new project.
Interior Highlights
Steering Wheel
The Ferrari Luce is a shout-out to the Nardi wheel from the 1950s and 60s. It is constructed of 100% recycled aluminum, and the alloy was developed specifically for the vehicle to “ensure mechanical resistance and a superb surface quality for the anodisation process.”
It weighs 400 grams less than a standard Ferrari steering wheel:

Credit: Ferrari
It features two analogue control modules, ensuring both functionality and clarity, Ferrari said. The carmaker drew inspiration from Formula One single-seaters, and every button has been developed to provide “the most harmonious combination of mechanical and acoustic feedback based on more than 20 evaluation tests with Ferrari test drivers.”
Instrument Cluster and Displays
There are three displays in the Luce — a driver binnacle, control panel, and rear control panel, which have all been “meticulously designed for clarity and purpose.”
The binnacle moves with the steering wheel and is optimized for the driver’s view of the instrumentation and supporting driver performance.
- Credit: Ferrari
- Credit: Ferrari
Displays are crafted by Samsung and were specifically designed for the car, using a “world first – three large cutouts strategically reveal the information generated by a second display behind the top panel, creating a fascinating visual depth that captures the eye.”
Samsung Display engineers created an ultra-light, ultra-thin OLED panel for the vehicle.

Credit: Ferrari
Pricing is still what remains a mystery within the Luce project. Past reports have speculated that the price could be at least €500,000, or $535,000.
Elon Musk
Elon Musk pivots SpaceX plans to Moon base before Mars
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Elon Musk has clarified that SpaceX is prioritizing the Moon over Mars as the fastest path to establishing a self-growing off-world civilization.
The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.
Why the Moon is now SpaceX’s priority
In a series of posts on X, Elon Musk stated that SpaceX is focusing on building a self-growing city on the Moon because it can be achieved significantly faster than a comparable settlement on Mars. As per Musk, a Moon city could possibly be completed in under 10 years, while a similar settlement on Mars would likely require more than 20.
“For those unaware, SpaceX has already shifted focus to building a self-growing city on the Moon, as we can potentially achieve that in less than 10 years, whereas Mars would take 20+ years. The mission of SpaceX remains the same: extend consciousness and life as we know it to the stars,” Musk wrote in a post on X.
Musk highlighted that launch windows to Mars only open roughly every 26 months, with a six-month transit time, whereas missions to the Moon can launch approximately every 10 days and arrive in about two days. That difference, Musk stated, allows SpaceX to iterate far more rapidly on infrastructure, logistics, and survival systems.
“The critical path to a self-growing Moon city is faster,” Musk noted in a follow-up post.
Mars still matters, but runs in parallel
Despite the pivot to the Moon, Musk stressed that SpaceX has not abandoned Mars. Instead, Mars development is expected to begin in about five to seven years and proceed alongside the company’s lunar efforts.
Musk explained that SpaceX would continue launching directly from Earth to Mars when possible, rather than routing missions through the Moon, citing limited fuel availability on the lunar surface. The Moon’s role, he stated, is not as a staging point for Mars, but as the fastest achievable location for a self-sustaining off-world civilization.
“The Moon would establish a foothold beyond Earth quickly, to protect life against risk of a natural or manmade disaster on Earth,” Musk wrote.






