Connect with us

News

SpaceX’s Starship Mk1 prototype heads to the launch pad – but why?

On October 30th, SpaceX installed half of Starship Mk1 on a new launch mount constructed at its Boca Chica launch pad. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has transported (half of) its Starship Mk1 prototype to its South Texas launch pad for the first time ever, signifying that the company is about to enter a major new stage of testing.

The move, however, raises the question: why is SpaceX transporting only half of Starship Mk1 to the launch pad?

Following SpaceX CEO Elon Musk’s September 28th presentation on Starship, the spacecraft prototype was partially disassembled, having essentially been mocked up to stand as a backdrop at the event. The impact was fairly minor, taking up no more than a few days of work, but Starship Mk1 remains in two large, separate pieces – a curved nose section and the ship’s cylindrical propellant tank and propulsion section.

Starship Mk1’s nose and tail sections were separated on October 1st. (NASASpaceflight – bocachicagal)

A little over a month after Musk’s presentation, SpaceX technicians freed Starship Mk1’s lower tank section from a steel mount and temporarily installed the giant half-spacecraft on framework mounted to a Roll Lift transporter. SpaceX has consistently relied on Roll Lifts for the task of transporting Starship’s massive segments both around and between its Boca Chica, Texas build and launch facilities. This time around, only Starship Mk1’s lower half was loaded onto the transporter before being staged overnight near the main gate of SpaceX’s build site.

Although work continued throughout the night, around dawn on October 30th, transport activity restarted in earnest, with technicians preparing to move Starship. A road closure filed with Cameron County suggested that something would occur on the 30th, with followers speculating that Starship Mk1 would be transported to SpaceX’s South Texas launch pad. As it turned out, that speculation was correct, and (half of) Starship Mk1 was indeed moved to the launch pad and installed atop a new launch mount that was built from scratch in just a few months.

(Half a) Starship on the pad

While it’s undeniably thrilling to see Starship Mk1 head to SpaceX’s Boca Chica launch pad for the first time ever, it remains to be seen why exactly only half of the rocket was transported – no mean feat. Although a great deal of progress has been made over the last month outfitting Starship Mk1 with all the wiring, electronics, plumbing, and other subsystems the prototype will need to function, it’s plainly visible that a significant amount of work remains before Starship will be ready for integrated testing.

Advertisement
A panorama of Starship Mk1’s business end and tank section. Recent work has focused on outfitting Mk1 with an array of wiring and piping, some of which is visible here. (NASASpaceflight – bocachicagal)
SpaceX has made a huge amount of progress on Starship’s new launch mount over the last 1-2 months, but plenty of work clearly remains before it will be ready for full-scale operations. (NASASpaceflight – bocachicagal)

Most notably, as pictured above, the launch mount frame is certainly more or less complete, but most of the complex plumbing, wiring, and power equipment it will need to serve its function is not obviously present. There is admittedly a possibility that SpaceX will reuse the ‘quick disconnect’ umbilical ports used by Starhopper on Starship Mk1, but that remains to be seen.

Starship Mk1 itself has a ways to go before it will be ready for integrated testing. Near the orange plastic is what is believed to be a large propellant feed line, needed to fuel Starship. Those lines have yet to be closed off. (NASASpaceflight – bocachicagal)

Additionally, Starship Mk1 also has some level of work left before it will be ready for its first propellant loading test, let alone flight. Aside from a large amount of wiring and avionics that still needs to be partially run, harnessed, and connected, Starship’s main liquid oxygen and methane feedlines – needed to fuel the rocket – are largely complete but still unfinished.

There are at least a few obvious possible explanations for SpaceX moving the Starship Mk1 tank section to the launch pad in its partially-finished state. The easiest explanation is that SpaceX wants to perform leak and pressure tests of Starship’s tanks as early as possible, even if that involves testing the rocket without its nose (the host of Mk1’s batteries, power controllers, COPVs, pressurization tanks, and more). It’s not clear that Starship Mk1 is – at present – capable of performing a wet dress rehearsal (WDR), a common aerospace test where a rocket is fully fueled and counts down to launch without actually igniting.

Starhopper performed several wet dress rehearsal tests before its final 150m flight test in August 2019. (LabPadre, 07/14/19)

Instead, SpaceX could potentially perform a pressure (or at least leak) test with a neutral gas (or perhaps liquid nitrogen) just to verify that Starship Mk1 is structurally sound before kicking off cryogenic propellant loading. Additionally, it’s possible that SpaceX could get around Mk1’s incomplete propellant feed lines by attaching pad umbilicals directly to the ends of the incomplete feed lines.

At the same time, it’s possible that SpaceX has decided to finish assembling Starship at the launch pad itself, hinted at when a local photographer captured a number of Mk1’s control surfaces and aero covers being moved around shortly after Starship was moved to the pad. Time will tell. For the time being, SpaceX has no more road closures scheduled (meaning no nose section transport) until November 7th and 8th, followed by another on the 12th.

Stay tuned to find out what transpires!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading