Connect with us

News

SpaceX upgrading Starship noses and domes for easier assembly

SpaceX is now exclusively producing upgraded Starship noses and has begun work on similarly improved domes. (NASASpaceflight - bocachicagal)

Published

on

While a separate team closes in on the completion of a new and improved Starship nosecone, SpaceX also appears to have begun assembling upgraded ‘tank domes’ that feature a similar underlying design change.

On the nose front, SpaceX has been working on a new and improved version of Starship’s nosecone for at least a year and assembling pathfinders and prototypes of varying fidelity since mid-2020 – around the same time when Starship SN15 became the first (and only) prototype to successfully launch and land. Further down the rocket, hints of Starship dome upgrades are a much more recent development.

Excluding Starship Mk1, which never had its far flimsier nose fully installed, the Starship nose design has been extremely consistent ever since SpaceX began building the first prototypes in mid-2020. Early prototypes were inevitably scrapped as SpaceX quickly iterated on the nose design and assembly process, culminating in Starship SN8, which became the first prototype to have its basic structure (tank section, nose, and flaps) fully assembled.

A very literal demonstration of the sequence of nosecone assembly circa June 2020. (NASASpaceflight – bocachicagal)
Starship SN8’s nose was installed in October 2020. (NASASpaceflight – Nomadd)
A look inside Starship SN9’s nose section in December 2020. (Steve Jurvetson)

Though improvements and changes have almost certainly been made in the last ~18 months, the early unflown prototypes and the noses of Starships SN8, SN9, SN10, SN11, SN15, SN16, S20, and S22 have all been constructed in roughly the same way. SpaceX would first produce a series of thin, stamped sheets (gores) of steel. Once aligned on custom-built jigs, each of those gores would be welded together to form a slightly conical ring. Five total ‘rings’ would be assembled, each narrower and more conical than the last. The five sections would then be stacked one by one and welded together along their circumferences.

The last old nose meets the first new nose. (NASASpaceflight – bocachicagal)

Altogether, something like 120 complex vertical welds would be needed just to assemble the most basic structure of a nose, followed by four or five no less complex circumferential welds to turn those sections into one cone. SpaceX’s upgraded design seeks to simplify that process mainly by increasing the size of the gores. Aside from modestly reducing the number of longitudinal sections needed to form the cone, SpaceX has also reduced the number of stacked sections from five to two, slashing the total number of gores needed by at least a factor of two or three. While not quite as substantial, the same simplification also reduces the length of vertical and circumferential welds needed to assemble a nosecone.

A series of present-day Starship and Super Heavy domes. (NASASpaceflight – bocachicagal)
A more… dome-like… dome. (NASASpaceflight – bocachicagal)

The spirit behind SpaceX’s new dome design appears to be very similar. Presumably doubling down on the stretch-forming production method developed for nosecone gores, SpaceX appears to have also decided to increase the size of dome gores and reduce the number of stacked sections required for dome assembly – albeit from three to two instead of five to two.

Collectively, this behavior is mostly predictable. With increasing confidence in the current design of Starship and Super Heavy, SpaceX now appears to be looking for ways to streamline and simplify manufacturing while simultaneously optimizing Starship’s design. Regardless of whether one is dealing with a highly advanced rocket factory or a smartphone assembly line, part count reduction is a very common and desirable way to reduce both cost and complexity. Additionally, drastically reducing the number of individual welds – and, to a slightly lesser degree, the total length of welds – required should also reduce the number of possible points of failure and the time needed for weld inspection and repair.

Having already scrapped a number of new nose pathfinders, it appears that Starship S24 will be the first to feature the new design. The process of stacking the ship has already begun. For domes, SpaceX appears to have only just begun assembling the first prototypes. If past dome changes are indicative of future behavior, one or several new ‘test tanks’ will likely be built to ensure that the new dome design performs as well as present-day hardware. It’s also unclear if SpaceX aims to replace all domes with a more spherical design or if, say, current Starship and Super Heavy thrust domes will remain the same for the time being.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adds 15th automaker to Supercharger access in 2025

Published

on

tesla supercharger
Credit: Tesla

Tesla has added the 15th automaker to the growing list of companies whose EVs can utilize the Supercharger Network this year, as BMW is the latest company to gain access to the largest charging infrastructure in the world.

BMW became the 15th company in 2025 to gain Tesla Supercharger access, after the company confirmed to its EV owners that they could use any of the more than 25,000 Supercharging stalls in North America.

Newer BMW all-electric cars, like the i4, i5, i7, and iX, are able to utilize Tesla’s V3 and V4 Superchargers. These are the exact model years, via the BMW Blog:

  • i4: 2022-2026 model years
  • i5: 2024-2025 model years
    • 2026 i5 (eDrive40 and xDrive40) after software update in Spring 2026
  • i7: 2023-2026 model years
  • iX: 2022-2025 model years
    • 2026 iX (all versions) after software update in Spring 2026

With the expansion of the companies that gained access in 2025 to the Tesla Supercharger Network, a vast majority of non-Tesla EVs are able to use the charging stalls to gain range in their cars.

So far in 2025, Tesla has enabled Supercharger access to:

  • Audi
  • BMW
  • Genesis
  • Honda
  • Hyundai
  • Jaguar Land Rover
  • Kia
  • Lucid
  • Mercedes-Benz
  • Nissan
  • Polestar
  • Subaru
  • Toyota
  • Volkswagen
  • Volvo

Drivers with BMW EVs who wish to charge at Tesla Superchargers must use an NACS-to-CCS1 adapter. In Q2 2026, BMW plans to release its official adapter, but there are third-party options available in the meantime.

They will also have to use the Tesla App to enable Supercharging access to determine rates and availability. It is a relatively seamless process.

Continue Reading

News

Tesla adds new feature that will be great for crowded parking situations

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

Published

on

Credit: Grok

Tesla has added a new feature that will be great for crowded parking lots, congested parking garages, or other confusing times when you cannot seem to pinpoint where your car went.

Tesla has added a new Vehicle Locator feature to the Tesla App with App Update v4.51.5.

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

While there are several new features, which we will reveal later in this article, perhaps one of the coolest is that of the Vehicle Locator, which will now point you in the direction of your car using a directional arrow on the home screen. This is similar to what Apple uses to find devices:

In real time, the arrow gives an accurate depiction of which direction you should walk in to find your car. This seems extremely helpful in large parking lots or unfamiliar shopping centers.

Getting to your car after a sporting event is an event all in itself; this feature will undoubtedly help with it:

Tesla’s previous app versions revealed the address at which you could locate your car, which was great if you parked on the street in a city setting. It was also possible to use the map within the app to locate your car.

However, this new feature gives a more definitive location for your car and helps with the navigation to it, instead of potentially walking randomly.

It also reveals the distance you are from your car, which is a big plus.

Along with this new addition, Tesla added Photobooth features, Dog Mode Live Activity, Custom Wraps and Tints for Colorizer, and Dashcam Clip details.

All in all, this App update was pretty robust.

Continue Reading

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading