Connect with us

News

SpaceX upgrading Starship noses and domes for easier assembly

SpaceX is now exclusively producing upgraded Starship noses and has begun work on similarly improved domes. (NASASpaceflight - bocachicagal)

Published

on

While a separate team closes in on the completion of a new and improved Starship nosecone, SpaceX also appears to have begun assembling upgraded ‘tank domes’ that feature a similar underlying design change.

On the nose front, SpaceX has been working on a new and improved version of Starship’s nosecone for at least a year and assembling pathfinders and prototypes of varying fidelity since mid-2020 – around the same time when Starship SN15 became the first (and only) prototype to successfully launch and land. Further down the rocket, hints of Starship dome upgrades are a much more recent development.

Excluding Starship Mk1, which never had its far flimsier nose fully installed, the Starship nose design has been extremely consistent ever since SpaceX began building the first prototypes in mid-2020. Early prototypes were inevitably scrapped as SpaceX quickly iterated on the nose design and assembly process, culminating in Starship SN8, which became the first prototype to have its basic structure (tank section, nose, and flaps) fully assembled.

A very literal demonstration of the sequence of nosecone assembly circa June 2020. (NASASpaceflight – bocachicagal)
Starship SN8’s nose was installed in October 2020. (NASASpaceflight – Nomadd)
A look inside Starship SN9’s nose section in December 2020. (Steve Jurvetson)

Though improvements and changes have almost certainly been made in the last ~18 months, the early unflown prototypes and the noses of Starships SN8, SN9, SN10, SN11, SN15, SN16, S20, and S22 have all been constructed in roughly the same way. SpaceX would first produce a series of thin, stamped sheets (gores) of steel. Once aligned on custom-built jigs, each of those gores would be welded together to form a slightly conical ring. Five total ‘rings’ would be assembled, each narrower and more conical than the last. The five sections would then be stacked one by one and welded together along their circumferences.

The last old nose meets the first new nose. (NASASpaceflight – bocachicagal)

Altogether, something like 120 complex vertical welds would be needed just to assemble the most basic structure of a nose, followed by four or five no less complex circumferential welds to turn those sections into one cone. SpaceX’s upgraded design seeks to simplify that process mainly by increasing the size of the gores. Aside from modestly reducing the number of longitudinal sections needed to form the cone, SpaceX has also reduced the number of stacked sections from five to two, slashing the total number of gores needed by at least a factor of two or three. While not quite as substantial, the same simplification also reduces the length of vertical and circumferential welds needed to assemble a nosecone.

A series of present-day Starship and Super Heavy domes. (NASASpaceflight – bocachicagal)
A more… dome-like… dome. (NASASpaceflight – bocachicagal)

The spirit behind SpaceX’s new dome design appears to be very similar. Presumably doubling down on the stretch-forming production method developed for nosecone gores, SpaceX appears to have also decided to increase the size of dome gores and reduce the number of stacked sections required for dome assembly – albeit from three to two instead of five to two.

Collectively, this behavior is mostly predictable. With increasing confidence in the current design of Starship and Super Heavy, SpaceX now appears to be looking for ways to streamline and simplify manufacturing while simultaneously optimizing Starship’s design. Regardless of whether one is dealing with a highly advanced rocket factory or a smartphone assembly line, part count reduction is a very common and desirable way to reduce both cost and complexity. Additionally, drastically reducing the number of individual welds – and, to a slightly lesser degree, the total length of welds – required should also reduce the number of possible points of failure and the time needed for weld inspection and repair.

Having already scrapped a number of new nose pathfinders, it appears that Starship S24 will be the first to feature the new design. The process of stacking the ship has already begun. For domes, SpaceX appears to have only just begun assembling the first prototypes. If past dome changes are indicative of future behavior, one or several new ‘test tanks’ will likely be built to ensure that the new dome design performs as well as present-day hardware. It’s also unclear if SpaceX aims to replace all domes with a more spherical design or if, say, current Starship and Super Heavy thrust domes will remain the same for the time being.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult

Published

on

Credit: Grok Imagine

Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.

Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.

However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.

He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:

Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”

This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.

However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.

Continue Reading

News

Tesla gives its biggest hint that Full Self-Driving in Europe is imminent

Published

on

Credit: BLKMDL3 | X

Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.

Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”

Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.

This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.

Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.

This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.

Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.

Tesla Europe builds momentum with expanding FSD demos and regional launches

Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.

Continue Reading

Elon Musk

SpaceX Starship V3 gets launch date update from Elon Musk

The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

Published

on

Credit: SpaceX/X

Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.

The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability. 

The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.

Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.

“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Continue Reading