Connect with us

News

SpaceX’s orbital Starship launch debut may be pushed to 2022 by slow FAA reviews

Published

on

In a rare sign of material progress, SpaceX and the FAA have finally released what is known as a draft environmental assessment (EA) of the company’s South Texas Starship launch plans.

Set to be the largest and most powerful rocket in spaceflight history when it first begins orbital launches, the process of acquiring permission to launch Starship and its Super Heavy booster out of the wetlands of the South Texas coast was never going to be easy. The Boca Chica site SpaceX ultimately settled on for its first private launch facilities – initially meant for Falcon 9 and Falcon Heavy but later dedicated to BFR (now Starship) – is simultaneously surrounded by sensitive coastal habitats populated by several threatened or endangered species and situated mere miles as the crow flies from a city whose temporary population oscillates from a few thousand to tens of thousands.

Reception and analysis of the draft and its timing have been mixed. On one hand, SpaceX’s draft EA – completed with oversight from the FAA and help from the US Fish and Wildlife Service (USFWS) – gives a number of reasons for optimism. In a sign that SpaceX is taking a pragmatic approach to the inevitable environmental review and launch license approval hurdles standing in front of orbital South Texas Starship launches, the company has actually pursued what is known as a “programmatic environmental assessment” (PEA).

Most importantly, that means that SpaceX’s Starbase PEA – if approved – will be more like a foundation or stepping stone that should make it easier to start small and methodically expand the scope and nature of the company’s plans for Boca Chica. Along those lines, as part of Starbase’s first dedicated environmental assessment, SpaceX has proposed a maximum of 23 flight operations annually while Starship is still in the development phase, including up to 20 suborbital Starship test flights and 3 orbital launches (or Super Heavy hops). Once SpaceX has worked out enough kinks for slightly more confident Starship operations, the company would enter an “operational phase” that would allow for as many as five suborbital Starship launches and five orbital Starship launches, as well as ship and booster landings back on land after all 10 possible launches.

SpaceX’s “proposed annual [Starship] operations” under the initial PEA.

In other words, SpaceX’s initial draft PEA is extremely conservative, requesting permission for what amounts to a bare minimum concept of operations for orbital Starship launches. At a maximum of 3-5 orbital launches per year, a PEA and subsequent launch license approved as-is would likely give SpaceX just enough slack to perform basic Earth orbit launches and no more than one or two orbital refilling tests per year. However, as an example, a five-launch maximum would almost entirely prevent SpaceX from launching Starship to Mars, the Moon, and maybe even high-energy Earth orbits without using all of its annual launch allotments on a single mission.

Perhaps most importantly, the draft PEA as proposed would unequivocally prevent SpaceX from performing the NASA Human Lander System (HLS) Moon landings it received an almost $3 billion contract to complete. Each HLS Starship Moon landing is expected to require anywhere from 10-16 launches to deliver a depot ship, HLS lander, and ~1200 tons of propellant to orbit. However, in terms of SpaceX’s prospects of developing Starship as quickly as possible, that’s actually a good thing. Above all else, SpaceX’s slimmed-down draft PEA should be far easier for the FAA to approve than a PEA pursuing permission for Starship’s ultimate ambitions – dozens to hundreds of launches annually – from the beginning. In theory, with this barebones PEA approved, SpaceX would then be able to build off the foundation with additional environmental assessments – like, for example, of expanding Starship’s maximum launch cadence.

Advertisement
-->

Of course, SpaceX first needs the FAA turn this first draft PEA into a favorable environmental assessment (not a guarantee) before any of the above starts to matter. Based on the content of the draft itself and associated appendixes, SpaceX appears to have a decent shot at receiving a “finding of no significant impact (FONSI)” or “mitigated FONSI” determination. However, SpaceX began the process of creating that draft as far back as mid-2020, followed by an FAA announcement in November 2020. The implication is that the FAA managed to drag out a draft release process that some have estimated should have taken 3-4 months into an arduous 10-15 month ordeal.

Combined with the uphill battle it’s starting to look like SpaceX will have to wage for an orbital Starship launch license in South Texas, it’s looking increasingly likely that Starship, Super Heavy, and Starbase will be technically ready for orbital launch tests well before the FAA is ready to approve or license them. Barring delays, the public now has until mid-October to read and comment on SpaceX’s draft PEA, after which the FAA and SpaceX will review those comments and hopefully turn the draft into a completed review. Even if the FAA were to somehow take just two months to return a best-case FONSI, clearing Starbase of environmental launch hurdles, it’s hard to imagine that the agency could then turn around and approve an orbital Starship launch license – or even a one-off experimental permit – in the last few weeks of 2021.

Ultimately, that means that nothing short of a minor miracle is likely to prevent the FAA’s environmental review and licensing delays from directly delaying Starship’s orbital launch debut. There is at least a chance that Starship, Super Heavy, and Starbase’s orbital launch site wont be ready for orbital launches by the end of the year, but it’s increasingly difficult to imagine that all three won’t be proof tested, qualified, and ready for action just a month or two from now. For the time being, we’ll just have to wait and see where the cards fall.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading