Connect with us

News

SpaceX to put custom Starship propellant storage tanks through first trial

Published

on

In the latest twist in the saga of SpaceX’s custom-built Starship launch pad propellant storage tanks, the company appears to have retroactively decided to build small prototype meant solely for testing.

Known as a ‘test tank,’ the relatively small steel structure was fairly rapidly assembled from parts of an older Ground Support Equipment (GSE) tank scrapped in July over the last week or so. SpaceX completed the first Starship-derived propellant storage tank in April 2021 and rapidly rolled that tank (GSE1) and a second (GSE2) from the build site to the orbital launch pad just a few weeks apart. Less than a month after that, SpaceX also completed GSE tank #3, though things seemingly devolved into chaos immediately thereafter.

Only three months later would GSE3 finally be transported to – and installed on a concrete mount at – Starship’s first orbital launch site, and only after a number of structural modifications and in the footsteps of GSE tanks #5 and #6. Little is known about why SpaceX’s custom GSE tank production faltered so soon after it began, why none of the five Starship-sized tanks installed at the orbital pad have been fully plumbed or subjected to any kind of testing, or why structural modifications were seemingly required after the fact. However, it’s safe to say that SpaceX’s brand new GSE ‘test tank’ is now at the center of the mystery.

Starship S20, test tank GSE4, and (half of) Super Heavy Booster 3. (NASASpaceflight – bocachicagal)

Thankfully, at minimum, the rapid appearance of SpaceX’s first GSE test tank returns some level of familiarity to the brief but chaotic history of Starship’s orbital launch pad propellant tanks. Test tanks are nothing new and have been an integral part of Starship development since Test Tank 1 first headed to SpaceX’s suborbital launch (and test) facilities in January 2020. In the 20 months since, SpaceX has built and tested seven small test tanks, several of which didn’t survive.

Whether intentionally destroyed or not, each test tank explicitly helped SpaceX qualify new manufacturing techniques, different materials, and different skin thickness and generally gather data more quickly and cheaply than full-scale prototypes would allow. Most recently, for example, SpaceX seemingly successfully tested a Super Heavy booster test tank, subjecting the prototype to cryogenic liquid nitrogen and using hydraulic rams to simulate the thrust of nine Raptor engines on an unproven disk-like thrust structure.

Now, almost as if SpaceX snapped out of a trance and remembered the utility of test tanks, the company has assembled a subscale GSE prototype presumably meant to verify that its custom-built propellant storage tanks can handle a set of conditions significantly different from the Starships they’re derived from. In this case, that GSE tank was quite literally built from scrapped sections of GSE tank #4. In fact, the top half (forward dome section) was quite literally cut off of GSE4 after the tank was scrapped last month for unknown reasons.

Advertisement

Over the last several months, while GSE tank production and installation took an unexpected hiatus, SpaceX workers slowly but surely welded steel rings (stiffeners) to the exterior of GSE1, GSE2, and GSE3. When GSE5 and GSE6 eventually headed to the pad, they left with those stiffeners already installed, implying that whatever tripped SpaceX up was likely structural. The GSE4 test tank also includes external stiffeners along each circumferential weld (where rings were stacked or domes joined).

Test tank GSE4. (NASASpaceflight – bocachicagal)
SpaceX’s GSE tanks and their “cryo shells.” (NASASpaceflight – bocachicagal)

At the same time as SpaceX was (or wasn’t, for several months) building its own GSE tanks, contractors normally tasked with assembling water towers and storage tanks in situ built eight massive 12m (~40 ft) wide tanks of their own. Deemed “cryo shells,” much like their name suggests, those tanks are meant to fully enclose SpaceX’s GSE tanks. SpaceX will use those shells to insulate their thin, single-walled steel propellant tanks, thus keeping their cryogenic contents cryogenic for as long as possible. How they’ll be insulated is unclear, though.

Based on the seemingly retroactive decision to strengthen the exterior of those GSE tanks, the general consensus as of late is that SpaceX wants to pull at least a partial vacuum in the gap between shell and tank. It’s also possible that SpaceX will do the opposite and pressurize that gap (as much as possible) with an insulative gas like nitrogen. Extra confusion comes from the fact that Starship tanks are technically designed to support a literal spacecraft (operating in a near-total vacuum) without the need for external stiffeners.

Additionally, it’s fairly clear that SpaceX hasn’t built a custom subscale cryoshell or concrete installation pad for its GSE4 test tank, meaning that it will really only be useful for testing some of the loads operational GSE tanks will experience inside their sleeves. Additionally, given that SpaceX has already completed six of the orbital pad’s seven GSE tanks and all seven of their cryosleeves, the discovery of any significant issues during GSE4 testing could easily trigger months of rework and delays. With any luck, though, GSE4 will sail through an imminent test campaign, clearing the way for SpaceX to finish plumbing, sleeving, and activating Starship’s first orbital launch site tank farm.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y reclaims elusive sales title in competitive market

As more EVs have entered the market and some at better prices, Tesla’s Model Y has been put up against some very attractive options.

Published

on

Credit: Tesla

The Tesla Model Y reclaimed an elusive sales title in one of the most competitive markets it is in, outpacing key rivals and formidable competitors to regain the crown it once was a shoe-in for.

As more EVs have entered the market and some at better prices, Tesla’s Model Y has been put up against some very attractive options.

This is especially prudent in Europe and China, where domestic car companies have been offering attractive and cheap EVs as Tesla alternatives.

However, in September, the Model Y was able to battle back and take over the top sales spot for EVs in Europe.

In September, it had 25,938 sales, and although it was an 8.6 percent decrease compared to the same month in 2024, it was enough to be labeled the best-selling car in the European market, Automotive News reported.

500-mile test proves why Tesla Model Y still humiliates rivals in Europe

There are four vehicles that have been atop the European EV sales rankings for any given month this year: the Renault Clio, which has three titles, the Dacia Sandero, which has won four monthly sales titles, and the Volkswagen T-Roc, which was the best-selling car in the market in August.

The Clio captured the number-two spot in September with 20,146 sales.

Despite a strong September showing for the Model Y, which was its first monthly sales crown of the year, the vehicle has not been a top-three EV in Europe this year. That is still led by the Sandero, Clio, and T-Roc.

Despite that, Tesla’s Model Y is still likely to be one of the best-selling vehicles in the world, if not the best, for the year.

In the United States, it has dominated EV sales charts and has been one of the most popular cars in the region. The same goes for China, where the Model Y has more competition than in Europe, but is so attractive because of its premium look and feel, as well as its tech offerings.

The Model Y has been the best-selling car globally for the past two years, outpacing widely popular gas and EV models from around the world.

Tesla also just finished up its best three-month sales period in its history, delivering just shy of half a million vehicles from July to September.

Continue Reading

News

Tesla dashcam video shows crazy plane crash avoidance maneuver

Published

on

Credit: @davidbellow | X

A Tesla captured video of a crashing plane on an Oklahoma highway, as a shocking video shows a small aircraft coming across a local roadway, with various cars ducking to avoid it.

On October 23, an Oklahoma National Guard OA-1K Skyraider II turboprop plane crashed during a training mission after an engine failure. Both crew members escaped unharmed, but they were not the only ones at risk of injury.

A Tesla Dashcam video shared by a friend of the car’s owner shows the vehicle narrowly avoiding an impact with the plane, swerving left, then back onto its side of the road. It appears to be a serious miracle:

David Bellow, the person who posted the video of the Tesla avoiding the plane, claims it was Full Self-Driving that performed the maneuver, but it is not confirmed. This is what he said:

There are a few hints that suggest it could be Tesla’s Full Self-Driving suite, but it is important to note that neither the company, the driver, nor the friend has confirmed this.

The first hint is the vehicle’s maneuver and subsequent reaction. The car suddenly swerves to the left, which any human would do, but how the vehicle continues to travel as if nothing had happened seems to solidify the idea that FSD could have been involved in avoiding the plane.

Nevertheless, this does not confirm that FSD was in control.

My Tesla did this on FSD (Supervised) v14.1 and the internet went crazy

Most people would likely have stopped in their tracks after avoiding an aircraft while driving.

However, this is not enough proof to definitively say FSD was responsible for the avoidance.

Additionally, the “Jump to Event” button is activated in the video, suggesting that FSD was in control. The vehicle gives this option when something major has occurred, including human intervention.

Regardless of whether the car was on FSD or was controlled manually, it is pretty crazy to have this piece of dashcam footage.

Continue Reading

News

Tesla Full Self-Driving got a minor feature that’s a massive improvement

“Brake Confirm for the Start Self-Driving button is now defaulted off. When disabled, Start Self-Driving will not require you to press and release the brake to confirm engagement.”

Published

on

Credit: Tesla

Tesla’s Full Self-Driving suite seems to get better with every single release. However, it is also making it more seamless and easier than ever to use for passenger travel, thanks to a recent feature that has flown under the radar.

Tesla started rolling out its v14 iteration of the Full Self-Driving suite a few weeks ago to Early Access Program (EAP) members, and it finally started making its way to the public for the first time earlier this week.

Tesla Full Self-Driving v14.1 first impressions: Robotaxi-like features arrive

The wide rollout of Tesla v14.1.3 was long-awaited, as its capabilities were flexed by the handful of people lucky to have it. However, those sitting with v13.2.9 were still eager to get to their hands on the new FSD version, especially considering it came with a lot of cool upgrades.

One of which is flying under the radar and not getting as much attention as it should. Although it is a minor feature change from v13, Tesla has made FSD more seamless than ever with a simple fix that it started utilizing with v14.

With v14.1.1, Tesla started rolling out the removal of the “Brake Confirm” feature, which required drivers to touch the brake to activate Full Self-Driving. This is now an optional feature, as it now is defaulted to the off position by the car.

The release notes for the feature state:

“Brake Confirm for the Start Self-Driving button is now defaulted off. When disabled, Start Self-Driving will not require you to press and release the brake to confirm engagement.

You can enable Brake Confirm in Autopilot > Brake Confirm.”

Simply put, you no longer need to touch the brake to confirm your intention to use Full Self-Driving, which is a small but very effective fix.

It makes your car much more active in terms of overall activation, and it is definitely a quicker and more streamlined departure from your current location than ever before.

Here’s a good look at how quick it is:

@teslarati With Tesla Full Self-Driving v14, there is no delay when you start FSD. Press “Start Self-Driving” and you’re on your way #fyp #viral #tesla #teslafsd #fsdv14 ♬ original sound – TESLARATI

The feature is small, but it is very noticeable with your first uses of FSD v14. Eventually, it will become even more streamlined as Tesla solves self-driving and autonomy, as it will require zero human intervention to get started, which means the “Start Self-Driving” button will also be removed.

Continue Reading

Trending