News
SpaceX aces Starship static fire days after NASA astronaut visit
Update: Around 9am CDT (UTC-5), SpaceX successfully fired up Starship serial number 11’s (SN11) three Raptor engines, completing the static fire test on the first try of the day and just two hours into in Monday’s eight-hour window.
As far as three-engine Starship static fires go, SN11’s Monday test was about as smooth and clean as they come, boding extremely well for a launch attempt as early as either Tuesday or Wednesday, according to Temporary Flight Restrictions (TFRs) filed with the FAA. With flight termination system (FTS) explosive charges already installed and an FAA license in hand, all that stands between Starship SN11 and flight is a deeper static fire review and the cooperation of local weather conditions. Stay tuned for updates!
A group of NASA astronauts appear to have taken an agency-sanctioned trip down to SpaceX’s Boca Chica Starship facilities, including a visit with a prototype scheduled to fire up and launch as early as this week.
Seemingly in lockstep with the accelerating pace of Starship production and testing, the frequency of NASA astronaut visits to SpaceX’s South Texas facilities has also seen an uptick over the last six or so months.
Back in 2019, SpaceX built Starhopper, performed numerous tests with early Raptor engine prototypes, and performed two untethered hops. With that success in hand, SpaceX turned its focus to Starship Mk1 and suffered an almost immediate failure during pressure testing, encouraging a series of rapid manufacturing upgrades largely completed in just a few months’ time.
In 2020, SpaceX pushed those new facilities to the limits while continuing major expansions. In 12 months, SpaceX built and tested five small ‘test tanks’ and six full Starship tank sections, performed almost a dozen Raptor static fires with that hardware, hopped two of those tanks (SN5 & SN6) to 150m, fully integrated the first full-height Starship (SN8), and nearly landed that vehicle after an otherwise flawless 12.5 km (7.8 mi) launch and descent.
Back in 2019, NASA inked its first monetary Starship contract with SpaceX, awarding $3M to prototype a coupling mechanism Starships will need to dock and refuel in space. In April 2020, NASA revealed that SpaceX – with its Starship launch vehicle – was one of three finalists selected to compete for a Human Landing System (HLS) Moon lander contract, providing the company $135M of the full $970M award to begin preliminary design and certification work.
Around five months later, a group of NASA astronauts made their first public visit to SpaceX’s Starship development hub in South Texas, overflying the factory and launch pad in training jets on a routine sortie out of Houston and Johnson Space Center. Days later, SpaceX won a $53M NASA “Tipping Point” contract to demonstrate large-scale cryogenic propellant transfer with a Starship prototype.
Ultimately, excluding rock-solid commercial crew and cargo partnerships, NASA’s relationship with SpaceX and the company’s Starship appears to be growing stronger every day. While it’s hard to say just how indicative of that growth the visible attention of NASA’s astronaut corps is, it’s worth taking note of what those same astronauts aren’t (publicly) overflying, visiting, and touring – namely factories, R&D facilities, or prototype hardware of HLS competitors Dynetics and Blue Origin.
Delayed by about a week, SpaceX is currently preparing to fire up its fourth full-size Starship prototype – SN11 – for the first time as early as Monday, March 22nd, 19 days after Starship SN10 briefly landed in one piece. SpaceX has filed temporary flight restrictions (TFRs) with the FAA for SN11’s 10 km (6.2 mi) launch debut from Tuesday through Friday, leaving plenty of opportunities for a launch this week if the rocket can successfully test its three Raptor engines by Wednesday.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”