News
SpaceX Starship holds up under pressure, lines up Raptor engine test fire
After a few false starts and some minor delays, SpaceX’s 11th Starship prototype (SN11) has made it through two of the three major tests standing between it and liftoff.
SpaceX rolled Starship SN11 from the factory to the launch pad on March 8th, just five days after Starship SN10 briefly became the first prototype of its kind to land in one piece. One or two issues with Raptor’s final landing burn caused SN10 to touch down faster than expected and eventually led to the rocket’s explosive demise around 15 minutes later. Still, the test flight was an almost unequivocal success and seemingly left SpaceX with more than enough confidence to speed through preparations for the next flight test.
Heading into the next day, SpaceX had hoped to kick off cryogenic proof testing but Starship SN11 required a bit more attention than expected and unknown bugs ultimately meant that only an ambient-temperature pressure test could be completed by the end of the test window. Those issues appeared to persist through the end of March 10th, preventing any kind of proof test attempt.
On March 11th, Starship SN11 was able to take its first real stab at a cryo proof and was loaded with liquid nitrogen (LN2), a cryogenic fluid with a density and temperature similar to Starship’s liquid oxygen and methane propellant but without the risk of a catastrophic fire or explosion. Over the course of three or so hours, SpaceX didn’t appear to fully load SN11 with LN2, a possible sign of a technical bug that could just as easily be an intentional part of the test design.
Oddly, parts of the evenings testing were unlike past cryo proofs and there’s a slight chance that the activity was actually a static fire attempt scrubbed well before ignition, though it’s impossible to say without official confirmation.
Otherwise, the most notable part of the cryo proof was a test of Starship SN11’s attitude control system (ACS) that involved firing each of the ship’s several cold-gas nitrogen thrusters at least 5-10 times for a total of several dozen bursts. The current generation of Starships mainly use those thrusters to augment their flaps and perform flip maneuvers during suborbital launch and landing attempts, while early orbital-class prototypes may use the same thruster system to control their attitude in the vacuum of space.
If last night’s cryo proof test was successful and gave SpaceX the data it needs to give SN11 a good bill of health, the Starship could potentially attempt its first Raptor engine static fire as early Friday, March 12th. Historically, SpaceX has never static fired a Starship prototype less than 12 days after its launch site arrival, meaning that a static fire tomorrow would smash the previous record by a factor of three. As such, it’s more likely that SN11 will need a day or two and be ready for a static fire attempt as early as Monday, March 15th.
Either way, Starship SN11 is undeniably on a faster track than any of its three-engine predecessors and a clean static fire on Friday or Monday would leave a launch next week – SpaceX’s current target– well within reach.
News
Tesla Sweden maintains Trelleborg port deal despite union blockade
As noted in a report from Dagens Arbete (DA), Tesla was able to maintain its storage agreement with the Port of Trelleborg.
Tesla Sweden is still storing vehicles at the Port of Trelleborg despite the ongoing blockades against the company from the country’s labor unions.
Tesla still at Port of Trelleborg
As noted in a report from Dagens Arbete (DA), Tesla was able to maintain its storage agreement with the Port of Trelleborg. This allows the company to keep vehicles at the port while imports into Sweden continue. This was despite the Transport Workers’ Union’s blockade, which was aimed at halting the loading and unloading of Tesla vehicles in the area.
Local union leader Jörgen Wärja, chairman of Transport and an employee representative on the port company’s board, confirmed that the agreement was still active. “The agreement has not been terminated. You want to have the money instead of having empty warehouses. I understand the reason, but I do not support it,” Wärja said
The local union leader also noted that he visited Tesla’s storage area earlier this week. “There were a lot of cars. I was surprised that there were so many, actually,” he said.
Tesla had been able to bring vehicles into Sweden via passenger ferries at Trelleborg, a method that unions said allowed the company to bypass the blockade, DA noted. According to estimates from IF Metall, the workaround enabled Tesla to deliver thousands of cars to Sweden each year.
Port defends decision
The Port of Trelleborg did not issue a comment on its current agreement with Tesla, but said it had complied with union sympathy measures. Documents reviewed by Swedish media showed that the contract with Tesla was being extended in six-month intervals.
Port CEO Malin Collin noted that the port would not discuss individual customer arrangements. “We do not go into details regarding any customer agreements. We have continuous dialogue with potential tenants, and this is not unique to any location,” Collin wrote in an email.
The CEO added that the port was following legal requirements related to the labor dispute. “We have taken note of the Transport Workers’ Union’s decision on sympathy measures and are of course following applicable legislation and the requirements placed on us as employers,” Collin said.
Jörgen Wärja, for his part, stated that the issue was not whether Tesla’s imports into Sweden could be fully stopped, but whether the port should provide logistical support to the electric vehicle maker during an active conflict. “The port shouldn’t have anything to do with Tesla at all, we believe,” he said. “It’s purely moral. Whether you honor a conflict or not. If you say you support Transport’s sympathetic actions against Tesla, it becomes a double standard.”
Elon Musk
Elon Musk shares insights on SpaceX and Tesla’s potential scale
In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.
Elon Musk outlined why he believes Tesla and SpaceX ultimately dwarf their competitors, pointing to autonomy, robotics, and space-based energy as forces that fundamentally reshape economic scale.
In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.
Space-based energy
In a response to a user on X who observed that SpaceX has a larger valuation than all six US defense companies combined, Musk explained that space-based industries will eventually surpass the total economic value of Earth. He noted that space allows humanity to harness roughly 100,000 times more energy than Earth currently uses, while still consuming less than a millionth of the Sun’s total energy output.
That level of available energy should enable the emergence and development of industries that are simply not possible within Earth’s physical and environmental constraints. Continuous solar exposure in space, as per Musk’s comment, removes limitations imposed by atmosphere, weather, and land availability.
Autonomy and robots
In a follow-up post, Elon Musk explaned that “due to autonomy, Tesla is worth more than the rest of the auto industry.” Musk added that this assessment does not yet account for Optimus, Tesla’s humanoid robot. As per the CEO, once Optimus reaches scaled production, it could increase Earth’s gross domestic product by an order of magnitude, ultimately paving the way for sustainable abundance.
Even before the advent of Optimus, however, Tesla’s autonomous driving system already gives vehicles the option to become revenue-generating assets through services like the Tesla Robotaxi network. Tesla’s autonomous efforts seem to be on the verge of paying off, as services like the Robotaxi network have already been launched in its initial stages in Austin and the Bay Area.
News
Tesla Cybercab undergoes winter testing as Elon Musk reiterates production start date
CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.
Tesla has reiterated that production of its fully autonomous Cybercab is set to begin in April, even as the company continues expanding real-world testing of the vehicle.
CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.
Musk confirms April Cybercab initial production
In a post on X, Musk reiterated that Cybercab production is scheduled to begin in April, reiterating his guidance about the vehicle’s manufacturing timeline. Around the same time, Tesla shared images showing the Cybercab undergoing cold-weather testing in Alaska. Interestingly enough, the Cybercab prototypes being tested in Alaska seemed to be equipped with snow tires.
Winter testing in Alaska suggests Tesla is preparing the Cybercab for deployment across a wide range of climates in the United States. Cold temperatures, snow, ice, and reduced traction present some of the most demanding scenarios for autonomous systems, making Alaska a logical proving ground for a vehicle designed to operate without a human driver.
Taken together, Musk’s production update and Tesla’s testing post indicate that while the Cybercab is nearing the start of manufacturing, validation efforts are still actively ramping to ensure reliability in real-world environments.
What early Cybercab production might look like
Musk has previously cautioned that the start of Cybercab manufacturing will be slow, reflecting the challenges of launching an all-new vehicle platform. In a recent comment, Musk said initial production typically follows an S-curve, with early output constrained by how many new parts and processes are involved.
According to Musk, both Cybercab and Optimus fall into this category, as “almost everything is new.” As a result, early production rates are expected to be very deliberate before eventually accelerating rapidly as manufacturing processes mature.
“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk wrote in a post on X.
