Connect with us

News

SpaceX just finished Starship’s 100th Raptor engine

SpaceX's Hawthorne rocket factory has completed the 100th full-scale Raptor engine. (SpaceX)

Published

on

SpaceX says its Hawthorne, California rocket factory and headquarters has completed the assembly of Starship and Super Heavy’s 100th Raptor engine.

SpaceX began developing Raptor behind the scenes as far back as 2012 and 2013, when a small team successfully tested a full-scale Raptor preburner – a small but important subcomponent – at NASA’s Stennis Space Center (SSC) facilities. Three years later, in September 2016, CEO Elon Musk revealed the first integrated static fire of a Raptor prototype – though it would later become clear that that prototype was a subscale engine about the same size as Falcon 9’s Merlin 1D.

After two and a half years of subscale testing that helped SpaceX refine startup and shutdown sequences and the general operation of what quickly became the world’s most thoroughly tested full-flow staged combustion engine, SpaceX graduated to full-scale testing. Designed to produce about twice the thrust (~200 tons/440,000 lbf) of its subscale predecessors, the first full-scale Raptor engine shipped to SpaceX’s McGregor, Texas test facilities and completed its first static fire days later on February 3rd, 2019.

Notably, the very first full-scale Raptor prototype (SN1) not only survived its first test but lived long enough to complete several more, ultimately reaching SpaceX’s minimum thrust target four days after its first static fire. A vibration issue would soon require several months of troubleshooting and iterative build-test-fail cycles but Raptor was ultimately ready to support its first brief Starhopper hop tests in July and August.

Advertisement

Approximately 15 months after Raptor’s first flight, Starship prototype SN8 successfully lifted off with three engines, one of which performed a near-flawless four-minute burn to apogee. Eventually, six months after SN8’s successful ascent but failed landing, Starship SN15 successfully landed, demonstrating Raptor’s ability to reignite mid-flight. Since SN15’s May 2021 success, SpaceX appears to have completed anywhere from 20 to 35+ new Raptors as part of a dramatic acceleration in production to meet the needs of at least two imminent orbital Starship test flights – both of which will need approximately 35 engines each.

Per its label, RB16 – now better known as the 100th Raptor engine overall – is the 16th Raptor Boost engine built by SpaceX. “Boost” refers to the particular variant – in this case, a Raptor engine specifically designed for an outer ring of 20 engines on each Super Heavy booster. Unlike Raptor Center (RC) engines, the outer ring of Raptor Boost engines are fixed in place against the rocket’s skirt and aren’t designed to vector their thrust (i.e. gimbal). According to Musk, all sea level-optimized Raptor engines will ultimately produce approximately 230 tons (~510,000 lbf) of thrust.

Relative to almost any other large-scale engine development program in the last half-century, Raptor’s 29-month 100-engine milestone is an extraordinary achievement. The closest comparable engine is Blue Origin’s BE-4, which is expected to produce up to ~240 tons (~540,000 lbf) of thrust, uses an efficient (albeit slightly less so) combustion cycle, and relies on the same methane and oxygen propellant. Full-scale BE-4 testing began 16 months before Raptor in October 2017 and Blue Origin has reportedly only built and tested nine prototypes in the almost four years since. According to Musk, as of May 2021, SpaceX is now building more than a dozen Raptors – including prototypes and flight engines – every month.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

IM Motors co-CEO apologizes to Tesla China over FUD comments

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

Published

on

Credit: Grok Imagine

Liu Tao, co-CEO of IM Motors, has publicly apologized to Tesla China for comments he made in 2022 suggesting a Tesla vehicle was defective following a fatal traffic accident in Chaozhou, China. 

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

IM Motors co-CEO issues apology

Liu Tao posted a statement addressing remarks he made following a serious traffic accident in Chaozhou, Guangdong province, in November 2022, as noted in a Sina News report. Liu stated that based on limited public information at the time, he published a Weibo post suggesting a safety issue with the Tesla involved in the crash. The executive clarified that his initial comments were incorrect.

“On November 17, 2022, based on limited publicly available information, I posted a Weibo post regarding a major traffic accident that occurred in Chaozhou, suggesting that the Tesla product involved in the accident posed a safety hazard. Four hours later, I deleted the post. In May 2023, according to the traffic police’s accident liability determination and relevant forensic opinions, the Chaozhou accident was not caused by Tesla brake failure. 

Advertisement

“The aforementioned findings and opinions regarding the investigation conclusions of the Chaozhou accident corrected the erroneous statements I made in my previous Weibo post, and I hereby clarify and correct them. I apologize for the negative impact my inappropriate remarks made before the facts were ascertained, which caused Tesla,” Liu said. 

Investigation and court findings

The Chaozhou accident occurred in Raoping County in November 2022 and resulted in two deaths and three injuries. Video footage circulated online at the time showed a Tesla vehicle accelerating at high speed and colliding with multiple motorcycles and bicycles. Reports indicated the vehicle reached a speed of 198 kilometers per hour.

The incident drew widespread attention as the parties involved provided conflicting accounts and investigation details were released gradually. Media reports in early 2023 said investigation results had been completed, though the vehicle owner requested a re-investigation, delaying the issuance of a final liability determination.

The case resurfaced later in 2023 following a defamation lawsuit filed by Tesla China against a media outlet. According to a court judgment cited by Shanghai Securities News, forensic analysis determined that the fatal accident was unrelated to any malfunction on the Tesla’s braking or steering systems. The court also ruled that the media outlet must publish an apology, address the negative impact on Tesla China’s reputation, and pay a penalty of 30,000 yuan.

Continue Reading

Elon Musk

SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report

The update was reportedly shared to Reuters by people familiar with the matter. 

Published

on

(Credit: T-Mobile)

SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone. 

The update was reportedly shared to Reuters by people familiar with the matter. 

A possible Starlink Phone

As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.

SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.

Advertisement

Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.” 

Starlink and SpaceX’s revenue

Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.

SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.

Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”

Advertisement
Continue Reading

Elon Musk

FCC accepts SpaceX filing for 1 million orbital data center plan

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.

Published

on

Credit: SpaceX/X

The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment. 

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.

FCC opens SpaceX’s proposal for comment

In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.

The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.

Advertisement

FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.

What SpaceX is proposing to build

As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.

The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.

As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.

Advertisement
Continue Reading