Connect with us

News

SpaceX’s Starship/Super Heavy rocket needs a launch pad and work is already starting

Published

on

According to SpaceX job posts published early this month, the company has already begun the process of looking for the engineer or engineers that will be responsible for preparing both Starship/Super Heavy and its prospective pad facilities for the rocket’s inaugural launches.

Per one of those posts, Starship/Super Heavy’s “initial launch capability” will be achieved at Kennedy Space Center’s historic Launch Complex 39A (also known as Pad 39A), a facility SpaceX has leased since 2014 and launched from since 2017. Originally constructed in the 1960s to support Saturn V, the largest operational US rocket ever built, Pad 39A spent another three decades supporting dozens of Shuttle launches until the latter was also retired, after which SpaceX took over the historic facility. Although SpaceX has specifically discussed plans to ultimately turn its South Texas outpost into a full-fledged orbital launch site, that will be an extremely slow and expensive endeavor and Pad 39A makes sense for several reasons.

Building rocket launch facilities is hard

Even though SpaceX has still tended to aggressively outperform its competitors and peers, the process of building a new launch complex from scratch is extremely challenging. For example, after SpaceX suffered a catastrophic failure of Falcon 9 at Pad 40 (LC-40) in September 2016, the company had to conduct extensive refurbishment and even tacked on some pre-planned upgrades. Still, a large portion of the pad remained intact, including the flame trench (with minor damage), hangar facilities, and more.

Ultimately, it took SpaceX more than 10 months and $50M to repair, rebuild, and upgrade LC-40. The biggest single ticket item was likely the new transporter/erector and its associated launch mount and water deluge system, followed by new plumbing and communications infrastructure throughout the pad. By far the most time-consuming and expensive process, however, is laying a foundation for the launch pad itself, most of which SpaceX was able to skip at Pad 40 after some relatively minor repairs and modifications.

Blue Origin’s LC-36 launch complex is pictured here in March 2018. (Blue Origin)

Although Blue Origin is as tightlipped as space startups come, owner Jeff Bezos has indicated that the companies large-scale LC-36 pad – built from a clean slate – was part of an overall investment of “more than $1 billion”. That is split between LC-36, a new factory, and a more general-use campus in and around Cape Canaveral, Florida. Building a factory is even more expensive than launch facilities, so the overall cost of building LC-36 from scratch is likely somewhere between $150M and $300M, although it could be even more expensive.

LC-36 is being built for New Glenn, a rocket that will produce roughly 75% as much thrust as Falcon Heavy and ~25% as much thrust as Starship’s Super Heavy booster at liftoff. This is all to make a simple point: if SpaceX means to do so, building a new Super Heavy-class launch pad at Boca Chica is going to take a bare minimum of a year and $100M+ (assuming Blue Origin has been somewhat inefficient, as usual). SpaceX’s current setup is unambiguously dedicated to far lower-thrust Starhopper (and maybe Starship) test flights, whereas an orbital launch complex capable of surviving Super Heavy liftoffs would be at least 5X larger and involve extensive foundation-laying and far more concrete.

SpaceX’s massive Launch Complex 39A is pictured here. (USAF – Hope Geiger, February 2019)
Pad 39A alongside an outdated aerial view of SpaceX’s Boca Chica launch facilities. The latter have changed significantly in 2018 and 2019 but have not grown beyond those rough bounds. (Teslarati)
SpaceX’s Boca Chica Starhopper facilities are absolutely dwarfed by all three of its operational launch pads. (Austin Barnard, February 2019)

All things considered, it’s thrilling that SpaceX is already in the process of designing and – soon – constructing the launch complex (or add-on hardware) that will support the first suborbital and orbital launches of Starship and Super Heavy. Per the aforementioned Launch Engineer job post, it seems all but certain that visible work at Pad 39A could begin at any moment, regardless of whether SpaceX has plans to subtly modify the existing 39A facilities or build something entirely new within its borders.

According to SpaceX VP of Commercial Sales Jonathan Hofeller, “the goal is to get orbital as quickly as possible, potentially even this year, with the full stack operational by the end of next year and then customers in early 2021.” In short, Starship and Super Heavy-compatible launch facilities are going to be needed at 39A (and, eventually, Boca Chica) far sooner than later. Even if it’s likely that the vehicle development will suffer delays that could push Starship’s orbital launch debut into 2021 or beyond, launch pad design and construction is challenging and slow but still fairly predictable. and it is certainly better to be early than to be late. In short, the next 12 months are going to be wild.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla lands new partnership with Uber as Semi takes center stage

Tesla and Uber will work together, using the company’s all-electric Semi, to make sustainable Class 8 electric trucks more affordable with three main strategies: Subsidized Pricing, Predictable Growth, and Optimization of Utilization.

Published

on

Credit: Uber

The Tesla Semi has led to a new partnership between the company and Uber, as the two are launching a program that aims to revolutionize logistics by making sustainable commercial vehicles more accessible.

Uber announced on Tuesday that it was planning to launch the Dedicated EV Fleet Accelerator Program in a new partnership with Tesla. Uber’s Freight division is mainly responsible for the new program, which it calls a “first-of-its-kind buyer’s program designed to make electric freight more affordable and accessible by addressing key adoption barriers.”

Tesla and Uber will work together, using the company’s all-electric Semi, to make sustainable Class 8 electric trucks more affordable with three main strategies: Subsidized Pricing, Predictable Growth, and Optimization of Utilization.

  • Subsidized Price: Fleets purchasing Tesla Semis through this program will receive a subsidy on the purchase price.   
  • Predictable Growth: Fleets will integrate their Tesla Semis into Uber Freight’s dedicated solutions for shippers for a pre-determined period. This creates an opportunity for carriers to forecast revenue with confidence, while shippers gain consistent access to reliable, zero-emission capacity. 
  • Optimize Utilization: Uber Freight taps into its extensive freight network to match carriers with consistent, high-quality freight from our strong shipper base—helping ensure the addition of these Tesla Semis stay fully utilized and carriers see dedicated, real, measurable returns from the start

Tesla will work directly with interested companies to iron out technical details about the Semi, as well as its cost of ownership based on the tailored needs of their business. Fleets can expect savings on the first day, Uber says, as they will avoid diesel fuel costs and reduced maintenance, a widely known advantage of EVs.

Uber announced that it had partnered with select carriers to pilot the Dedicated EV Fleet Accelerator Program prior to its launch:

“During the 2-month pilot program, the Tesla Semis showcased both reliability and efficiency for Uber Freight’s shipper network. Over 394 hours of drive time, carriers covered 12,377 miles. With an average net energy consumption of just 1.72 kWh per mile and only 60 hours of total charge time, these results highlight the operational viability of Tesla Semis on demanding freight lanes. “

In its press release launching the program, Uber effectively highlights how the use of the Semi can impact a company’s margins and profitability through fuel savings, reduced maintenance costs, and lower total cost of ownership.

This is something that turns so many people away from gas cars and toward EVs, so it’s no surprise that Uber wanted to emphasize this point on a larger scale with a company that utilizes a fleet of vehicles.

Tesla Semi shows strong results in ArcBest’s real-world freight trial

Tesla has been experimenting with a select group of companies, as well. It partnered with PepsiCo. several years ago, in an effort to launch a pilot program for the Semi. It had excellent results, showing higher efficiency, lower costs, and an exceptional ability to handle long runs.

Drivers have had a lot of positive things to say:

Tesla Semi earns strong reviews from veteran truckers

The Semi will enter mass production next year, but we anticipate that some companies will commit to Uber’s new platform well before then.

Continue Reading

Energy

Tesla recalls Powerwall 2 units in Australia

Published

on

(Credit: nathanwoodgc /Instagram)

Tesla will recall Powerwall 2 units in Australia after a handful of property owners reported fires that caused “minor property damage.” The fires were attributed to cells used by Tesla in the Powerwall 2.

Tesla Powerwall is a battery storage unit that retains energy from solar panels and is used by homeowners and businesses to maintain power in the event of an outage. It also helps alleviate the need to rely on the grid, which can help stabilize power locally.

Powerwall owners can also enroll in the Virtual Power Plant (VPP) program, which allows them to sell energy back to the grid, helping to reduce energy bills. Tesla revealed last year that over 100,000 Powerwalls were participating in the program.

Tesla announces 100k Powerwalls are participating in Virtual Power Plants

The Australia Competition and Consumer Commission said in a filing that it received several reports from owners of fires that led to minor damage. The Australian government agency did not disclose the number of units impacted by the recall.

The issue is related to the cells, which Tesla sources from a third-party company.

Anyone whose Powerwall 2 unit is impacted by the recall will be notified through the Tesla app, the company said.

Continue Reading

Cybertruck

Tesla launches Cybertruck orders in a new market with a catch

Published

on

Credit: Tesla

Tesla is launching Cybertruck orders in a new market, but there’s a bit of a catch.

The Cybertruck was launched in the Middle East earlier this year, as Tesla launched the ability to place a reservation for the all-electric pickup in the United Arab Emirates. It would be the first market outside of North America that would have the ability to place an order for the Cybertruck.

Tesla confirms Cybertruck will make its way out of North America this year

Other markets where the vehicle has been widely requested, like Europe and Asia, have still not approved the vehicle to be sold to the public, mostly because of size and design restrictions.

However, in the UAE, Tesla is opening up the ability for those who placed reservations for the vehicle to finally put in their order. The Order Configurator is only available to those who have already placed a reservation; it is not yet available to the public.

Tesla said it would open up the public online configurator across the Middle East in the coming weeks:

The UAE is not the only country that will have access to the Cybertruck, as fans in other Middle Eastern countries will also be able to place orders soon. Tesla announced back in April that Saudi Arabia and Qatar would also have Cybertruck deliveries.

These vehicles will be built at Tesla’s Gigafactory Texas plant just outside of Austin, as Gigafactory Berlin and Gigafactory Shanghai, two factories located in the same hemisphere as the Middle East, do not have established lines for Cybertruck production.

As for the other markets, Tesla CEO Elon Musk has hinted that the company could develop a smaller Cybertruck for those markets, as he admitted that in the long term, it likely made sense to build a more compact version for regions where roads are traditionally tighter.

Elon Musk hints at smaller Tesla Cybertruck version down the road

There has been no evidence of Tesla developing this more compact version, but it could eventually happen.

Continue Reading

Trending