Connect with us

News

SpaceX’s Starship/Super Heavy rocket needs a launch pad and work is already starting

Published

on

According to SpaceX job posts published early this month, the company has already begun the process of looking for the engineer or engineers that will be responsible for preparing both Starship/Super Heavy and its prospective pad facilities for the rocket’s inaugural launches.

Per one of those posts, Starship/Super Heavy’s “initial launch capability” will be achieved at Kennedy Space Center’s historic Launch Complex 39A (also known as Pad 39A), a facility SpaceX has leased since 2014 and launched from since 2017. Originally constructed in the 1960s to support Saturn V, the largest operational US rocket ever built, Pad 39A spent another three decades supporting dozens of Shuttle launches until the latter was also retired, after which SpaceX took over the historic facility. Although SpaceX has specifically discussed plans to ultimately turn its South Texas outpost into a full-fledged orbital launch site, that will be an extremely slow and expensive endeavor and Pad 39A makes sense for several reasons.

Building rocket launch facilities is hard

Even though SpaceX has still tended to aggressively outperform its competitors and peers, the process of building a new launch complex from scratch is extremely challenging. For example, after SpaceX suffered a catastrophic failure of Falcon 9 at Pad 40 (LC-40) in September 2016, the company had to conduct extensive refurbishment and even tacked on some pre-planned upgrades. Still, a large portion of the pad remained intact, including the flame trench (with minor damage), hangar facilities, and more.

Ultimately, it took SpaceX more than 10 months and $50M to repair, rebuild, and upgrade LC-40. The biggest single ticket item was likely the new transporter/erector and its associated launch mount and water deluge system, followed by new plumbing and communications infrastructure throughout the pad. By far the most time-consuming and expensive process, however, is laying a foundation for the launch pad itself, most of which SpaceX was able to skip at Pad 40 after some relatively minor repairs and modifications.

Blue Origin’s LC-36 launch complex is pictured here in March 2018. (Blue Origin)

Although Blue Origin is as tightlipped as space startups come, owner Jeff Bezos has indicated that the companies large-scale LC-36 pad – built from a clean slate – was part of an overall investment of “more than $1 billion”. That is split between LC-36, a new factory, and a more general-use campus in and around Cape Canaveral, Florida. Building a factory is even more expensive than launch facilities, so the overall cost of building LC-36 from scratch is likely somewhere between $150M and $300M, although it could be even more expensive.

LC-36 is being built for New Glenn, a rocket that will produce roughly 75% as much thrust as Falcon Heavy and ~25% as much thrust as Starship’s Super Heavy booster at liftoff. This is all to make a simple point: if SpaceX means to do so, building a new Super Heavy-class launch pad at Boca Chica is going to take a bare minimum of a year and $100M+ (assuming Blue Origin has been somewhat inefficient, as usual). SpaceX’s current setup is unambiguously dedicated to far lower-thrust Starhopper (and maybe Starship) test flights, whereas an orbital launch complex capable of surviving Super Heavy liftoffs would be at least 5X larger and involve extensive foundation-laying and far more concrete.

SpaceX’s massive Launch Complex 39A is pictured here. (USAF – Hope Geiger, February 2019)
Pad 39A alongside an outdated aerial view of SpaceX’s Boca Chica launch facilities. The latter have changed significantly in 2018 and 2019 but have not grown beyond those rough bounds. (Teslarati)
SpaceX’s Boca Chica Starhopper facilities are absolutely dwarfed by all three of its operational launch pads. (Austin Barnard, February 2019)

All things considered, it’s thrilling that SpaceX is already in the process of designing and – soon – constructing the launch complex (or add-on hardware) that will support the first suborbital and orbital launches of Starship and Super Heavy. Per the aforementioned Launch Engineer job post, it seems all but certain that visible work at Pad 39A could begin at any moment, regardless of whether SpaceX has plans to subtly modify the existing 39A facilities or build something entirely new within its borders.

According to SpaceX VP of Commercial Sales Jonathan Hofeller, “the goal is to get orbital as quickly as possible, potentially even this year, with the full stack operational by the end of next year and then customers in early 2021.” In short, Starship and Super Heavy-compatible launch facilities are going to be needed at 39A (and, eventually, Boca Chica) far sooner than later. Even if it’s likely that the vehicle development will suffer delays that could push Starship’s orbital launch debut into 2021 or beyond, launch pad design and construction is challenging and slow but still fairly predictable. and it is certainly better to be early than to be late. In short, the next 12 months are going to be wild.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief

“And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.”

Published

on

Credit: NVIDIA

NVIDIA CEO Jensen Huang appeared on the Joe Rogan Experience podcast on Wednesday and commended Tesla CEO Elon Musk for his early belief in what is now the most valuable company in the world.

Huang and Musk are widely regarded as two of the greatest tech entrepreneurs of the modern era, with the two working in conjunction as NVIDIA’s chips are present in Tesla vehicles, particularly utilized for self-driving technology and data collection.

Nvidia CEO Jensen Huang regrets not investing more in Elon Musk’s xAI

Both CEOs defied all odds and created companies from virtually nothing. Musk joined Tesla in the early 2000s before the company had even established any plans to build a vehicle. Jensen created NVIDIA in the booth of a Denny’s restaurant, which has been memorialized with a plaque.

On the JRE episode, Rogan asked about Jensen’s relationship with Elon, to which the NVIDIA CEO said that Musk was there when nobody else was:

“I was lucky because I had known Elon Musk, and I helped him build the first computer for Model 3, the Model S, and when he wanted to start working on an autonomous vehicle. I helped him build the computer that went into the Model S AV system, his full self-driving system. We were basically the FSD computer version 1, and so we were already working together.

And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.

He goes ‘You know what, I have a company that could really use this.’ I said, Wow, my first customer. And he goes, it’s an AI company, and it’s a nonprofit and and we could really use one of these supercomputers. I boxed one up, I drove it up to San Francisco, and I delivered it to the Elon in 2016.”

The first DGX-1 AI supercomputer was delivered personally to Musk when he was with OpenAI, which provided crucial early compute power for AI research, accelerating breakthroughs in machine learning that underpin modern tools like ChatGPT.

Tesla’s Nvidia purchases could reach $4 billion this year: Musk

The long-term alliance between NVIDIA and Tesla has driven over $2 trillion in the company’s market value since 2016.

Continue Reading

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading