News
SpaceX destacks “420” Starship, Super Heavy pair for the third time
Update: Shortly before SpaceX CEO Elon Musk revealed that Super Heavy booster B4 and Starship S20 are no longer assigned to the rocket’s orbital launch debut, the company ‘destacked’ the pair for the third time.
Ship 20 was removed from Booster 4 on March 19th, two days before Musk’s tweets. That’s not unusual: it was actually Ship 20’s third removal from Super Heavy. However, almost as soon as the Starship was rolled out of the way, SpaceX began making visible preparations to also remove Super Heavy B4 from Starbase’s orbital launch mount. As of March 24th, the booster has been attached to a large crane for more than a day and a newly upgraded transport stand has been rolled into place beside the launch mount. It’s somewhat odd that the booster hasn’t already been removed but that step could happen at almost any moment, now – albeit likely in daylight.
Once both Ship 20 and Booster 4 have been removed, it’s hard to imagine that they will ever return to the orbital launch mount. In fact, at minimum, Super Heavy B4 will probably be retired almost immediately. Super Heavy B7 – a superior, refined, and upgraded prototype by almost every measure – is already almost fully assembled and could likely begin basic testing within a week or two.
SpaceX CEO Elon Musk says that Super Heavy Booster B4 and Starship S20 are no longer scheduled to support the first orbital-class test flight of the world’s largest rocket.
Rumors, signs, and reports of the significant change have been flowing among unofficial spaceflight communities for months. Booster 4 and Ship 20 were first confirmed by Elon Musk to be the pair assigned to Starship’s orbital test flight (OTF) in the summer of 2021. When the pair first rolled out to the launch pad in early August, Musk seemed confident that they could be ready for an orbital launch attempt within a month or two. The same was true in November 2021, when Musk stated that the same Starship and Super Heavy pair could be ready for their first launch as early as January or February 2022.
Musk’s latest update on Starship’s orbital test flight continues that schedule optimism but also introduces several major changes – changes that could easily take several months to fully work through.
Crucially, Musk revealed that the first Starship to attempt an orbital-class launch will now feature upgraded Raptor V2 engines – engines that require an entirely new thrust structure design. That already all but guaranteed that B4 and S20 had been overtaken but Musk also explicitly confirmed that they would be replaced with a new pair in a later tweet.
That new pair – widely assumed to be Super Heavy B7 and Starship S24 – feature a wide range of design changes, including substantially modified header tanks, an entirely new nosecone design, new layouts for secondary systems (pressurization, avionics, heat exchangers, etc.), and more. Most importantly, their thrust structures – giant ‘pucks’ machined out of steel – have been tweaked to support new Raptor V2 engines instead of the Raptor V1 and V1.5 engines that have been installed and tested on all Starship and Super Heavy prototypes to date.
Musk believes that SpaceX will be able to build (and presumably qualify) all 39 of the Raptors Ship 24 and Booster 7 will need before the end of April and fully install them – as well as all the heat shield components that must be fitted around them – by the end of May 2022. It’s unclear if the SpaceX CEO is accounting for the extensive proof testing Ship 24 and Booster 7 will likely need to complete before being qualified for flight, including cryogenic proof tests, wet dress rehearsals, and at least a few static fire tests.
In fact, SpaceX has only performed a single three-engine static fire test with a fully outdated Super Heavy prototype. Before the company is confident in its booster design, it’s practically a certainty that one or more prototypes will be put through a lengthy test campaign that gradually evolves from igniting a few engines to igniting all 29 or 33 Raptors. That may actually be one of the reasons SpaceX appears to be retiring Booster 4 without a single static fire or flight test – performing all the requisite work may have ultimately been perceived as a dead-end when every future Starship and Super Heavy prototype will feature a heavily redesigned engine.
This is to say that much like Musk’s last few Starship OTF schedule estimates, May 2022 also appears to be extremely optimistic. Booster 7 could potentially be ready for cryogenic proof testing any day now but Ship 24 is still in five large pieces and probably at least a month from any form of test readiness. Still, there are some reasons for optimism. If Booster 7 actually does start basic proof testing this month or early next without waiting for its Raptor engines or for heat shield installation, SpaceX could theoretically complete cryoproofing, begin installing one or a few new Raptors at a time, and iteratively progress from static firing a few to all 33 engines as the engines are arriving at Starbase.
At a minimum, even if that razor-sharp test schedule isn’t possible, Booster 7 would at least have a month or so of extra testing over Ship 24, minimizing the disproportionate amount of testing each prototype will likely need to be qualified for flight. Unlike Booster 4, Ship 20 has completed several static fires and cryoproofs without any apparent issue.
For now, SpaceX continues to prepare Ship 24 sections for stacking and appears to be buttoning up Booster 7, which could easily be ready to roll out for basic testing within a few weeks – and maybe sooner.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.