News
SpaceX Starship outfitted with Tesla battery packs and motors
Following in the footsteps of the late Mk1 vehicle, SpaceX’s latest Starship prototype has been outfitted with several Tesla battery packs and motors over the last few weeks.
CEO Elon Musk has confirmed in the past that SpaceX intends to try to use Tesla batteries to power Starship rockets and Tesla motors to drive the ships’ large aerodynamic control surfaces. By all appearances, a Tesla Model S motor’s appearance on the exterior of a Starship prototype recently moved to the launch pad is a first for SpaceX. However, in 2019, SpaceX at one point planned to use and even installed battery packs on Starship Mk1 components before the ship was prematurely destroyed during testing. The nosecone those battery packs were installed in still sits in the middle of SpaceX’s growing Boca Chica rocket factory.
For Starship SN3, the purpose of its ~200 kWh of battery power is rather self-explanatory. The purpose of the Tesla Model S motor recently installed on its side is much less clear.


SpaceX is in the midst of preparing Starship SN3 for its first tests after assembling the rocket from next to nothing in less than a month. SpaceX transported the building-sized prototype a mile down the road to its Boca Chica launch site on March 29th, where dozens of workers have been poring over it day and night ever since. SpaceX originally wanted to attempt the ship’s first two tests yesterday, April 1st, but the scheduled times have come and gone while work continues. Several backup windows are ready on April 2nd, beginning shortly before this article went live (1am CDT, 06:00 UTC).
Regardless, with any rocket prototype, test schedules can be extremely fluid and are always liable to change. While SpaceX relies heavily on agile development strategies, beginning with a minimum viable product and iterating to something approaching feature-complete, there is some value in not turning the “move fast and break stuff” dial to 100%. In the case of Starship, the equivalent of tens to hundreds of thousands of work hours and several million dollars of hardware go into each prototype – incredibly cheap on the scale of aerospace development norms but still a significant chunk of change and effort. A few days or weeks of delays are an annoyance that can be suffered if it better guarantees a successful test, versus the alternative of potentially rushing and cutting corners.

SpaceX is now up to roughly five days of delays while preparing Starship SN3 for testing. Originally scheduled as early as April 1st, SpaceX has moved a planned Raptor engine static fire test to no earlier than (NET) April 6th, to be followed no fewer than several days later by a 150m (500 ft) hop test. Of course, before it can safely attempt its first static fire (or hop), SpaceX needs to verify that Starship SN3 – finished just days ago – is up to the task.
Enter Tesla hardware. During ground testing, Starship will likely be continuously connected to ground power sources. It’s also possible that SpaceX has chosen to use its Tesla battery packs as the main power source to insulate it from local outages. Either way, if or when Starship SN3 makes it to flight tests, the battery packs would power the ship’s onboard avionics, landing legs, and any other necessary equipment. That latter category may be where Starship’s apparent Model S motor comes in.

While it could simply be an early implementation test of the Tesla motors SpaceX wants to use to actuate Starship flaps and fins, there are no signs that SN3 will be outfitted with updated flaps and aerodynamic control surfaces more generally. For low-velocity testing, they’re simply unnecessary. Instead, it’s more likely that this Tesla motor is somehow involved in Starship’s autogenous pressurization system, a method of pressurizing tanks with the liquids they contain. Autogenous pressurization relies on a small portion of propellant (liquid oxygen and methane for Starship) being siphoned off and heated until it turns to gas. That oxygen or methane gas is then fed back into the tank it came from, keeping it at the pressure needed to feed Starship’s Raptor engines.
Autogenous pressurization is significantly more complex than the far more common use of helium or nitrogen pressurization systems. An electric pump could potentially be useful at several points throughout the process. Pump mystery aside, tune in to LabPadre’s 24/7 livestream below to follow along as SpaceX prepares to put Starship SN3 to the test for the first time.
News
Tesla Model S completes first ever FSD Cannonball Run with zero interventions
The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end with no interventions.
A Tesla Model S has completed the first-ever full Cannonball Run using Full Self-Driving (FSD), traveling from Los Angeles to New York with zero interventions. The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end, fulfilling a long-discussed benchmark for autonomy.
A full FSD Cannonball Run
As per a report from The Drive, a 2024 Tesla Model S with AI4 and FSD v14.2.2.3 completed the 3,081-mile trip from Redondo Beach in Los Angeles to midtown Manhattan in New York City. The drive was completed by Alex Roy, a former automotive journalist and investor, along with a small team of autonomy experts.
Roy said FSD handled all driving tasks for the entirety of the route, including highway cruising, lane changes, navigation, and adverse weather conditions. The trip took a total of 58 hours and 22 minutes at an average speed of 64 mph, and about 10 hours were spent charging the vehicle. In later comments, Roy noted that he and his team cleaned out the Model S’ cameras during their stops to keep FSD’s performance optimal.
History made
The historic trip was quite impressive, considering that the journey was in the middle of winter. This meant that FSD didn’t just deal with other cars on the road. The vehicle also had to handle extreme cold, snow, ice, slush, and rain.
As per Roy in a post on X, FSD performed so well during the trip that the journey would have been completed faster if the Model S did not have people onboard. “Elon Musk was right. Once an autonomous vehicle is mature, most human input is error. A comedy of human errors added hours and hundreds of miles, but FSD stunned us with its consistent and comfortable behavior,” Roy wrote in a post on X.
Roy’s comments are quite notable as he has previously attempted Cannonball Runs using FSD on December 2024 and February 2025. Neither were zero intervention drives.
Elon Musk
Tesla removes Autopilot as standard, receives criticism online
The move leaves only Traffic Aware Cruise Control as standard equipment on new Tesla orders.
Tesla removed its basic Autopilot package as a standard feature in the United States. The move leaves only Traffic Aware Cruise Control as standard equipment on new Tesla orders, and shifts the company’s strategy towards paid Full Self-Driving subscriptions.
Tesla removes Autopilot
As per observations from the electric vehicle community on social media, Tesla no longer lists Autopilot as standard in its vehicles in the U.S. This suggests that features such as lane-centering and Autosteer have been removed as standard equipment. Previously, most Tesla vehicles came with Autopilot by default, which offers Traffic-Aware Cruise Control and Autosteer.
The change resulted in backlash from some Tesla owners and EV observers, particularly as competing automakers, including mainstream players like Toyota, offer features like lane-centering as standard on many models, including budget vehicles.
That being said, the removal of Autopilot suggests that Tesla is concentrating its autonomy roadmap around FSD subscriptions rather than bundled driver-assistance features. It would be interesting to see how Tesla manages its vehicles’ standard safety features, as it seems out of character for Tesla to make its cars less safe over time.
Musk announces FSD price increases
Following the Autopilot changes, Elon Musk stated on X that Tesla is planning to raise subscription prices for FSD as its capabilities improve. In a post on X, Musk stated that the current $99-per-month price for supervised FSD would increase over time, especially as the system itself becomes more robust.
“I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve. The massive value jump is when you can be on your phone or sleeping for the entire ride (Unsupervised FSD),” Musk wrote.
At the time of his recent post, Tesla still offers FSD as a one-time purchase for $8,000, but Elon Musk has confirmed that this option will be discontinued on February 14, leaving subscriptions as the only way to access the system.
Cybertruck
Tesla begins Cybertruck deliveries in a new region for the first time
Tesla has initiated Cybertruck deliveries in a new region for the first time, as the all-electric pickup has officially made its way to the United Arab Emirates, marking the newest territory to receive the polarizing truck.
Tesla launched orders for the Cybertruck in the Middle East back in September 2025, just months after the company confirmed that it planned to launch the pickup in the region, which happened in April.
I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned
By early October, Tesla launched the Cybertruck configurator in the United Arab Emirates, Qatar, and Saudi Arabia, with pricing starting at around AED 404,900, or about $110,000 for the Dual Motor configuration.
This decision positioned the Gulf states as key early international markets, and Tesla was hoping to get the Cybertruck outside of North America for the first time, as it has still been tough to launch in other popular EV markets, like Europe and Asia.
By late 2025, Tesla had pushed delivery timelines slightly and aimed for an early 2026 delivery launch in the Middle East. The first official customer deliveries started this month, and a notable handover event occurred in Dubai’s Al Marmoom desert area, featuring a light and fire show.
Around 63 Cybertrucks made their way to customers during the event:
First @cybertruck deliveries in the UAE 🇦🇪 pic.twitter.com/sN2rAxppUA
— Tesla Europe & Middle East (@teslaeurope) January 22, 2026
As of this month, the Cybertruck still remains available for configuration on Tesla’s websites for the UAE, Saudi Arabia, Qatar, and other Middle Eastern countries like Jordan and Israel. Deliveries are rolling out progressively, with the UAE leading as the first to see hands-on customer events.
In other markets, most notably Europe, there are still plenty of regulatory hurdles that Tesla is hoping to work through, but they may never be resolved. The issues come from the unique design features that conflict with the European Union’s (EU) stringent safety standards.
These standards include pedestrian protection regulations, which require vehicles to minimize injury risks in collisions. However, the Cybertruck features sharp edges and an ultra-hard stainless steel exoskeleton, and its rigid structure is seen as non-compliant with the EU’s list of preferred designs.
The vehicle’s gross weight is also above the 3.5-tonne threshold for standard vehicles, which has prompted Tesla to consider a more compact design. However, the company’s focus on autonomy and Robotaxi has likely pushed that out of the realm of possibility.
For now, Tesla will work with the governments that want it to succeed in their region, and the Middle East has been a great partner to the company with the launch of the Cybertruck.