News
SpaceX Starship outfitted with Tesla battery packs and motors
Following in the footsteps of the late Mk1 vehicle, SpaceX’s latest Starship prototype has been outfitted with several Tesla battery packs and motors over the last few weeks.
CEO Elon Musk has confirmed in the past that SpaceX intends to try to use Tesla batteries to power Starship rockets and Tesla motors to drive the ships’ large aerodynamic control surfaces. By all appearances, a Tesla Model S motor’s appearance on the exterior of a Starship prototype recently moved to the launch pad is a first for SpaceX. However, in 2019, SpaceX at one point planned to use and even installed battery packs on Starship Mk1 components before the ship was prematurely destroyed during testing. The nosecone those battery packs were installed in still sits in the middle of SpaceX’s growing Boca Chica rocket factory.
For Starship SN3, the purpose of its ~200 kWh of battery power is rather self-explanatory. The purpose of the Tesla Model S motor recently installed on its side is much less clear.
SpaceX is in the midst of preparing Starship SN3 for its first tests after assembling the rocket from next to nothing in less than a month. SpaceX transported the building-sized prototype a mile down the road to its Boca Chica launch site on March 29th, where dozens of workers have been poring over it day and night ever since. SpaceX originally wanted to attempt the ship’s first two tests yesterday, April 1st, but the scheduled times have come and gone while work continues. Several backup windows are ready on April 2nd, beginning shortly before this article went live (1am CDT, 06:00 UTC).
Regardless, with any rocket prototype, test schedules can be extremely fluid and are always liable to change. While SpaceX relies heavily on agile development strategies, beginning with a minimum viable product and iterating to something approaching feature-complete, there is some value in not turning the “move fast and break stuff” dial to 100%. In the case of Starship, the equivalent of tens to hundreds of thousands of work hours and several million dollars of hardware go into each prototype – incredibly cheap on the scale of aerospace development norms but still a significant chunk of change and effort. A few days or weeks of delays are an annoyance that can be suffered if it better guarantees a successful test, versus the alternative of potentially rushing and cutting corners.
SpaceX is now up to roughly five days of delays while preparing Starship SN3 for testing. Originally scheduled as early as April 1st, SpaceX has moved a planned Raptor engine static fire test to no earlier than (NET) April 6th, to be followed no fewer than several days later by a 150m (500 ft) hop test. Of course, before it can safely attempt its first static fire (or hop), SpaceX needs to verify that Starship SN3 – finished just days ago – is up to the task.
Enter Tesla hardware. During ground testing, Starship will likely be continuously connected to ground power sources. It’s also possible that SpaceX has chosen to use its Tesla battery packs as the main power source to insulate it from local outages. Either way, if or when Starship SN3 makes it to flight tests, the battery packs would power the ship’s onboard avionics, landing legs, and any other necessary equipment. That latter category may be where Starship’s apparent Model S motor comes in.

While it could simply be an early implementation test of the Tesla motors SpaceX wants to use to actuate Starship flaps and fins, there are no signs that SN3 will be outfitted with updated flaps and aerodynamic control surfaces more generally. For low-velocity testing, they’re simply unnecessary. Instead, it’s more likely that this Tesla motor is somehow involved in Starship’s autogenous pressurization system, a method of pressurizing tanks with the liquids they contain. Autogenous pressurization relies on a small portion of propellant (liquid oxygen and methane for Starship) being siphoned off and heated until it turns to gas. That oxygen or methane gas is then fed back into the tank it came from, keeping it at the pressure needed to feed Starship’s Raptor engines.
Autogenous pressurization is significantly more complex than the far more common use of helium or nitrogen pressurization systems. An electric pump could potentially be useful at several points throughout the process. Pump mystery aside, tune in to LabPadre’s 24/7 livestream below to follow along as SpaceX prepares to put Starship SN3 to the test for the first time.
News
Elon Musk confirms Tesla FSD V14.2 will see widespread rollout
Musk shared the news in a post on social media platform X.

Elon Musk has confirmed that Tesla will be implementing a wide rollout of Full Self-Driving (FSD) V14 with the system’s V14.2 update. Musk shared the news in a post on social media platform X.
FSD V14.1.2 earns strong praise from testers
Musk’s comment came as a response to Tesla owner and longtime FSD tester AI DRIVR, who noted that it might be time to release Full Self-Driving to the fleet because V14.1.2 has already become very refined.
“95% of the indecisive lane changes and braking have been fixed in FSD 14.1.2. I haven’t touched my steering wheel in two days. I think it’s time, Tesla AI,” the longtime FSD tester wrote.
AI DRIVR’s comment received quite a bit of support from fellow Tesla drivers, some of whom noted that the improvements that were implemented in V14.1.2 are substantial. Others also agreed that it’s time for FSD to see a wide release.
In his reply to the FSD tester, CEO Elon Musk noted that FSD V14’s wide release would happen with V14.2. “14.2 for widespread use,” Musk wrote in his reply.
Mad Max mode makes headlines
One of the key features that was introduced with FSD’s current iteration is Mad Max mode, which allows for higher speeds and more frequent lane changes than the previous “Hurry” mode. Videos and social media posts from FSD testers have shown the system deftly handling complex traffic, merging seamlessly, and maintaining an assertive but safe driving behavior with Mad Max mode engaged.
Tesla AI head Ashok Elluswamy recently noted in a post on X that Mad Max mode was built to handle congested daytime traffic, making it extremely useful for drivers who tend to find themselves in heavy roads during their daily commutes. With Musk now hinting that FSD V14.2 will go on wide release, it might only be a matter of time before the larger Tesla fleet gets to experience the notable improvements of FSD’s V14 update.
News
Multiple Tesla Cybercab units spotted at Giga Texas crash test facility
The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size.

It appears that Tesla is ramping up its activities surrounding the development and likely initial production of the Cybercab at Giga Texas. This was, at least, hinted at in a recent drone flyover of the massive electric vehicle production facility in Austin.
Cybercab sightings fuel speculations
As observed by longtime Giga Texas drone operator Joe Tegtmeyer, Tesla had several covered Cybercab units outside the facility’s crash testing facility at the time of his recent flyover. The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size. Tegtmeyer also observed during his flyover that production of the Model Y Standard seems to be hitting its pace.
The drone operator noted that the seven covered Cybercabs might be older prototypes being decommissioned or new units awaiting crash tests. Either scenario points to a ramp-up in Cybercab activity at Giga Texas, however. “In either case, this is another datapoint indicating production is getting closer to happening,” Tegtmeyer wrote on X, highlighting that the autonomous two-seaters were quite exciting to see.
Cybercab production targets
This latest sighting follows reports of renewed Cybercab appearances at both the Fremont Factory and Giga Texas. A test unit was recently spotted driving on Giga Texas’ South River Road. Another Cybercab, seen at Tesla’s Fremont Factory, appeared to be manually driven, suggesting that the vehicle’s current prototypes may still be produced with temporary steering controls.
The Tesla Cybercab is designed to be the company’s highest-volume vehicle, with CEO Elon Musk estimating that the autonomous two-seater should see an annual production rate of about 2 million units per year. To accomplish this, Tesla will be building the Cybercab using its “Unboxed” process, which should help the vehicle’s production line achieve outputs that are more akin to consumer electronics production lines.
Elon Musk
Teslas in the Boring Co. Vegas Loop are about to get a big change
Elon Musk has a big update for Teslas that operate within the Boring Company’s Vegas Loop.

Tesla vehicles operating in the Boring Company’s Vegas Loop are about to get a big change, CEO Elon Musk said.
In Las Vegas, the Boring Company operates the Vegas Loop, an underground tunnel system that uses Teslas to drop people off at various hotspots on the strip. It’s been active for a few years now and is expanding to other resorts, hotels, and destinations.
Currently, there are stops at three resorts: Westgate, the Encore, and Resorts World. However, there will eventually be “over 100 stations and span over 68 miles of tunnel,” the Vegas Loop website says.
The Loop utilizes Tesla Model 3 and Model Y vehicles to send passengers to their desired destinations. They are currently driven using the Full Self-Driving suite, but they also have safety drivers in each vehicle to ensure safety.
Tesla Cybertruck rides are crucial for Vegas Loop expansion to airport
Tesla and the Boring Company have been working to remove drivers from the vehicles used in the Loop, but now, it appears there is a set timeline to have them out, according to CEO Elon Musk:
The Tesla cars operating in The Boring Company tunnels under Las Vegas will be driverless in a month or two https://t.co/mX4nNrJui9
— Elon Musk (@elonmusk) October 18, 2025
Musk says the Boring Co. will no longer rely on safety drivers within the Teslas for operation. Instead, Tesla will look to remove the safety drivers from the cars within the next month or two, a similar timeline for what Musk believes the Robotaxi platform will look like in Austin.
In Texas, as Robotaxi continues to operate as it has since June, there are still safety monitors within the car who sit in the passenger’s seat. They are there to ensure a safe experience for riders.
When the route takes the vehicle on the highway, safety monitors move into the driver’s seat.
However, Tesla wants to be able to remove safety monitors from its vehicles in Austin by the end of the year, Musk has said recently.
In early September, Musk said that the safety monitors are “just there for the first few months to be extra safe.” He then added that there “should be no safety driver by end of year.”
The safety driver is just there for the first few months to be extra safe.
Should be no safety driver by end of year.
— Elon Musk (@elonmusk) September 4, 2025
-
Elon Musk2 days ago
SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
-
Elon Musk1 day ago
Tesla Full Self-Driving gets an offer to be insured for ‘almost free’
-
News21 hours ago
Elon Musk confirms Tesla FSD V14.2 will see widespread rollout
-
News2 days ago
Tesla is adding an interesting feature to its centerscreen in a coming update
-
News4 days ago
Tesla launches new interior option for Model Y
-
News3 days ago
Tesla widens rollout of new Full Self-Driving suite to more owners
-
News4 days ago
Tesla makes big move with its Insurance program
-
Elon Musk2 days ago
Tesla CEO Elon Musk’s $1 trillion pay package hits first adversity from proxy firm