Connect with us

News

SpaceX tests Starhopper’s maneuvering thrusters ahead of inaugural flight test

On July 22nd, SpaceX technicians and engineers spent the evening testing Starhopper's nitrogen gas maneuvering thrusters, taken straight off of Falcon 9. (NASASpaceflight - bocachicagal)

Published

on

Late at night on July 22nd, SpaceX’s South Texas team of technicians and engineers were busy testing a small but critical component of Starhopper, a testbed and low-fidelity Starship prototype meant to attempt its first untethered flight test as early as July 24th.

Monday evening’s testing centered around Starhopper’s cold gas nitrogen thrusters, multi-nozzle assemblies that appear to have quite literally been taken off of flight-proven Falcon 9 boosters. For Starhopper, they will act in a similar – albeit significantly reduced – fashion, serving to control the giant steel prototype’s attitude and augment its lone Raptor engine’s own thrust vectoring (i.e. steering) capability.

Although SpaceX has never released official numbers for the thrust of the cold gas thrusters used on Falcon 9 boosters and upper stages, it’s safe to say from their performance that the low-efficiency nitrogen thrusters produce roughly 5 kN (~1100 lbf) of thrust, perhaps up to 10+ kN. For an almost empty Falcon 9 booster, this translates to extremely rapid (sub-10s) flip maneuvers during return-to-launch-site (RTLS) landings.

At the same time, Falcon boosters have two sizes of cold-gas thrusters, with much larger high-performance (>10 kN) pods – located on the larger of the booster’s two raceways – focused on settling the rocket’s propellant after recovery-related coast periods. A duo of smaller 3-axis pods situated on the outside of the interstage serve as true attitude control system (ACS) thrusters, precisely pointing, flipping, and orienting boosters during vacuum operations and partially augmenting grid fin control authority during the late stages of landings. Despite their much smaller size, they still pack an impressive punch and are famous for almost saving tipping Falcon boosters during early (failed) landing attempts.

Starhopper, meanwhile, is dramatically larger than the Falcon 9 and Heavy boosters its tacked-on ACS thruster pods were designed for. It’s hard to know for sure but safe estimates peg the testbed’s dry mass somewhere around 50-75 metric tons (110,000-165,000 lb) thanks to the thick steel it was constructed out of. In other words, Starhopper likely weighs at least twice as much as an empty Falcon 9 booster (~25 metric tons).

To alleviate this mismatch, SpaceX arrived at a hilariously simple and cheap solution: install double the number of grave-robbed Falcon 9 thruster pods on Starhopper and voila! It was that duo of thruster pod pairs that were tested on July 22nd, visibly producing four distinct jets of pressurized nitrogen gas. Whenever Starhopper gets to hopping, those ACS thrusters should help the rocket precisely control its rotation, attitude, and – to a lesser extent – translation, hopefully helping to ensure a successful inaugural hover and divert test.

Scheduled to occur no earlier than Wednesday, July 24th, SpaceX plans to deconflict Cargo Dragon’s CRS-18 launch and Starhopper’s hover test, meaning that they will not happen simultaneously. In the ~70%-likely event that bad Florida weather delays CRS-18 to Thursday, July 25th, the road before Starhopper will be clear for an attempted hover on the 24th. Additionally, also reported first by NASASpaceflight.com, the test is expected to involve a divert, meaning that Starhopper will lift off, hover roughly 20m (65 ft) off the ground, and then carefully travel a few hundred feet East to a recently-constructed concrete pad for a soft landing.

This divert was tacitly confirmed by the arrival of a robotic transport mechanism, already used once before to move Starhopper from its build site to the launch pad. If the divert goes as planned, the transport equipment will be used to return Starhopper to its spartan launch mount and ground support equipment (GSE) umbilicals.

If Starhopper survives and Raptor SN06 performs nominally, it’s all but certain that the testbed rocket will be put through a series of increasingly ambitious test flights over the coming months – at least before SpaceX’s first higher-fidelity “Mk 1” Starship prototypes begin their own flight tests. According to CEO Elon Musk, those Starship test hops and flights could begin as few as 2-3 months from now – September or October 2019.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla posts Optimus’ most impressive video demonstration yet

The humanoid robot was able to complete all the tasks through a single neural network.

Published

on

Credit: Tesla Optimus/X

When Elon Musk spoke with CNBC’s David Faber in an interview at Giga Texas, he reiterated the idea that Optimus will be one of Tesla’s biggest products. Seemingly to highlight the CEO’s point, the official Tesla Optimus account on social media platform X shared what could very well be the most impressive demonstration of the humanoid robot’s capabilities to date.

Optimus’ Newest Demonstration

In its recent video demonstration, the Tesla Optimus team featured the humanoid robot performing a variety of tasks. These include household chores such as throwing the trash, using a broom and a vacuum cleaner, tearing a paper towel, stirring a pot of food, opening a cabinet, and closing a curtain, among others. The video also featured Optimus picking up a Model X fore link and placing it on a dolly.

What was most notable in the Tesla Optimus team’s demonstration was the fact that the humanoid robot was able to complete all the tasks through a single neural network. The robot’s actions were also learned directly from Optimus being fed data from first-person videos of humans performing similar tasks. This system should pave the way for Optimus to learn and refine new skills quickly and reliably.

Tesla VP for Optimus Shares Insight

In a follow-up post on X, Tesla Vice President of Optimus (Tesla Bot) Milan Kovac stated that one of the team’s goals is to have Optimus learn straight from internet videos of humans performing tasks, including footage captured in third person or by random cameras.

“We recently had a significant breakthrough along that journey, and can now transfer a big chunk of the learning directly from human videos to the bots (1st person views for now). This allows us to bootstrap new tasks much faster compared to teleoperated bot data alone (heavier operationally).

Advertisement

“Many new skills are emerging through this process, are called for via natural language (voice/text), and are run by a single neural network on the bot (multi-tasking). Next: expand to 3rd person video transfer (aka random internet), and push reliability via self-play (RL) in the real-, and/or synthetic- (sim / world models) world,” Kovac wrote in his post on X.

Continue Reading

News

Starship Flight 9 nears as SpaceX’s Starbase becomes a Texan City

SpaceX’s launch site is officially incorporated as Starbase, TX. Starship Flight 9 could launch on May 27, 2025. 

Published

on

spacex-starship-flight-9-starbase-city
(Credit: Jenny Hautmann/Wikimedia Commons)

SpaceX’s Starbase is officially incorporated as a city in Texas, aligning with preparations for Starship Flight 9. The newly formed city in Cameron County serves as the heart of SpaceX’s Starship program.

Starbase City spans 1.5 square miles, encompassing SpaceX’s launch facility and company-owned land. A near-unanimous vote by residents, who were mostly SpaceX employees, led to its incorporation. SpaceX’s Vice President of Test and Launch, Bobby Peden, was elected mayor of Starbase. The new Texas city also has two SpaceX employees as commissioners. All Starbase officials will serve two-year terms unless extended to four by voters.

As the new city takes shape, SpaceX is preparing for the Starship Flight 9 launch, which is tentatively scheduled for May 27, 2025, at 6:30 PM CDT from Starbase, Texas.

SpaceX secured Federal Aviation Administration (FAA) approval for up to 25 annual Starship and Super Heavy launches from the site. However, the FAA emphasized that “there are other licensing requirements still to be completed,” including policy, safety, and environmental reviews.

Advertisement

On May 15, the FAA noted SpaceX updated its launch license for Flight 9, but added: “SpaceX may not launch until the FAA either closes the Starship Flight 8 mishap investigation or makes a return to flight determination. The FAA is reviewing the mishap report SpaceX submitted on May 14.”

Proposed Texas legislation could empower Starbase officials to close local highways and restrict Boca Chica Beach access during launches. Cameron County Judge Eddie Trevino, Jr., opposes the Texas legislation, insisting beach access remain under county control. This tension highlights the balance between SpaceX’s ambitions and local interests.

Starbase’s incorporation strengthens SpaceX’s operational base as it gears up for Starship Flight 9, a critical step in its mission to revolutionize space travel. With growing infrastructure and regulatory hurdles in focus, Starbase is poised to become a cornerstone of SpaceX’s vision, blending community development with cutting-edge aerospace innovation.

Advertisement
Continue Reading

News

The Boring Company accelerates Vegas Loop expansion plans

The Boring Company clears fire safety delays, paving the way to accelerating its Vegas Loop expansion plans.

Published

on

Credit: The Boring Company/X

After overcoming fire safety hurdles, the Boring Company is accelerating its Vegas Loop expansion. The project’s progress signals a transformative boost for Sin City’s transportation and tourism.

Elon Musk’s tunneling company, along with The Las Vegas Convention and Visitors Authority (LVCVA) and Clark County, resolved fire safety concerns that delayed new stations.

“It’s new. It’s taken a little time to figure out what the standard should be,” said Steve Hill, LVCVA President and CEO, during last week’s board meeting. “We’ve gotten there. We’re excited about that. We’re ready to expand further, faster, than we have.”

Last month, the company submitted permits for tunnel extensions connecting Encore to a parcel of land owned by Wynn and Caesars Palace. The three tunnels are valued at $600,000 based on country records.

Plans for a Tropicana Loop are also advancing, linking UNLV to MGM Grand, T-Mobile Arena, Allegiant Stadium, Mandalay Bay, and the upcoming Athletics’ ballpark. Downtown extensions from the convention center to the Strat, Fremont Street Experience, and Circa’s Garage Mahal are also in the permitting process.

Advertisement

“Those are all in process,” Hill noted. “We’ve got machines that are available to be put in the ground. I think we’ve reached a framework for how these projects are going to work and how they’ll be permitted from a safety standpoint, as well as a building standpoint.”

The Boring Company has six boring machines, with three currently active in Las Vegas. Last week, TBC announced that it successfully mined continuously in a Zero-People-in-Tunnel (ZPIT) configuration, enabling it to build more tunnels faster, safer, and at a more affordable rate.

Tunneling under Paradise Road is underway as The Boring Company works on the University Center Loop. The University Center Loop is expected to connect to the Las Vegas Convention Center within two months, linking to the Westgate tunnel. The full Vegas Loop will span 104 stations and 68 miles. Even though The Boring Company’s tunnel network in Las Vegas isn’t nearly finished, it has already become a key attraction in the city.

“It’s such a great attraction for shows that are looking at this building (convention center) and we’re going to be connected to everybody in town,” Hill said. “It’s a real difference-maker.”

A few Vegas Loop stations are already operational, including those connected to Resorts World, Westgate, Encore, and all the Las Vegas Convention Center Loop stations. The Downtown Loop, which connects to the downtown area, and the Riviera Station, the hub that leads to Resorts World with Westgate destinations, are also operational.

Advertisement

As The Boring Company accelerates the Vegas Loop, its tunnels are poised to redefine mobility and tourism in Las Vegas, blending cutting-edge technology with practical urban solutions.

Continue Reading

Trending