News
SpaceX tests Starhopper’s maneuvering thrusters ahead of inaugural flight test
Late at night on July 22nd, SpaceX’s South Texas team of technicians and engineers were busy testing a small but critical component of Starhopper, a testbed and low-fidelity Starship prototype meant to attempt its first untethered flight test as early as July 24th.
Monday evening’s testing centered around Starhopper’s cold gas nitrogen thrusters, multi-nozzle assemblies that appear to have quite literally been taken off of flight-proven Falcon 9 boosters. For Starhopper, they will act in a similar – albeit significantly reduced – fashion, serving to control the giant steel prototype’s attitude and augment its lone Raptor engine’s own thrust vectoring (i.e. steering) capability.
Although SpaceX has never released official numbers for the thrust of the cold gas thrusters used on Falcon 9 boosters and upper stages, it’s safe to say from their performance that the low-efficiency nitrogen thrusters produce roughly 5 kN (~1100 lbf) of thrust, perhaps up to 10+ kN. For an almost empty Falcon 9 booster, this translates to extremely rapid (sub-10s) flip maneuvers during return-to-launch-site (RTLS) landings.
At the same time, Falcon boosters have two sizes of cold-gas thrusters, with much larger high-performance (>10 kN) pods – located on the larger of the booster’s two raceways – focused on settling the rocket’s propellant after recovery-related coast periods. A duo of smaller 3-axis pods situated on the outside of the interstage serve as true attitude control system (ACS) thrusters, precisely pointing, flipping, and orienting boosters during vacuum operations and partially augmenting grid fin control authority during the late stages of landings. Despite their much smaller size, they still pack an impressive punch and are famous for almost saving tipping Falcon boosters during early (failed) landing attempts.
Starhopper, meanwhile, is dramatically larger than the Falcon 9 and Heavy boosters its tacked-on ACS thruster pods were designed for. It’s hard to know for sure but safe estimates peg the testbed’s dry mass somewhere around 50-75 metric tons (110,000-165,000 lb) thanks to the thick steel it was constructed out of. In other words, Starhopper likely weighs at least twice as much as an empty Falcon 9 booster (~25 metric tons).
To alleviate this mismatch, SpaceX arrived at a hilariously simple and cheap solution: install double the number of grave-robbed Falcon 9 thruster pods on Starhopper and voila! It was that duo of thruster pod pairs that were tested on July 22nd, visibly producing four distinct jets of pressurized nitrogen gas. Whenever Starhopper gets to hopping, those ACS thrusters should help the rocket precisely control its rotation, attitude, and – to a lesser extent – translation, hopefully helping to ensure a successful inaugural hover and divert test.
Scheduled to occur no earlier than Wednesday, July 24th, SpaceX plans to deconflict Cargo Dragon’s CRS-18 launch and Starhopper’s hover test, meaning that they will not happen simultaneously. In the ~70%-likely event that bad Florida weather delays CRS-18 to Thursday, July 25th, the road before Starhopper will be clear for an attempted hover on the 24th. Additionally, also reported first by NASASpaceflight.com, the test is expected to involve a divert, meaning that Starhopper will lift off, hover roughly 20m (65 ft) off the ground, and then carefully travel a few hundred feet East to a recently-constructed concrete pad for a soft landing.
Note they will want to deconflict with CRS-18, so if that launch is still on (dodgy weather) then perhaps hours before, or after launch? OR, *personal wish!!* go from CRS-18 webcast and then pad cameras at Boca Chica on the SpaceX webcast! ?➡️?
— Chris B – NSF (@NASASpaceflight) July 23, 2019
This divert was tacitly confirmed by the arrival of a robotic transport mechanism, already used once before to move Starhopper from its build site to the launch pad. If the divert goes as planned, the transport equipment will be used to return Starhopper to its spartan launch mount and ground support equipment (GSE) umbilicals.
If Starhopper survives and Raptor SN06 performs nominally, it’s all but certain that the testbed rocket will be put through a series of increasingly ambitious test flights over the coming months – at least before SpaceX’s first higher-fidelity “Mk 1” Starship prototypes begin their own flight tests. According to CEO Elon Musk, those Starship test hops and flights could begin as few as 2-3 months from now – September or October 2019.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla rolls out new Supercharging safety feature in the U.S.
Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.
It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.
The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.
With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:
“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”
The feature was first spotted by Not a Tesla App.
This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.
For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.
Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.
This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.
News
LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
Humanoid robot battery deals
LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.
China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.
LF Energy Solution vs rivals
According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.
LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.
News
Tesla receives approval for FSD Supervised tests in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.
Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market.
FSD Supervised testing in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.
Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted.
With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.
Tesla FSD Supervised Europe rollout
FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.
Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.
The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months.