News
SpaceX tests Starhopper’s maneuvering thrusters ahead of inaugural flight test
Late at night on July 22nd, SpaceX’s South Texas team of technicians and engineers were busy testing a small but critical component of Starhopper, a testbed and low-fidelity Starship prototype meant to attempt its first untethered flight test as early as July 24th.
Monday evening’s testing centered around Starhopper’s cold gas nitrogen thrusters, multi-nozzle assemblies that appear to have quite literally been taken off of flight-proven Falcon 9 boosters. For Starhopper, they will act in a similar – albeit significantly reduced – fashion, serving to control the giant steel prototype’s attitude and augment its lone Raptor engine’s own thrust vectoring (i.e. steering) capability.
Although SpaceX has never released official numbers for the thrust of the cold gas thrusters used on Falcon 9 boosters and upper stages, it’s safe to say from their performance that the low-efficiency nitrogen thrusters produce roughly 5 kN (~1100 lbf) of thrust, perhaps up to 10+ kN. For an almost empty Falcon 9 booster, this translates to extremely rapid (sub-10s) flip maneuvers during return-to-launch-site (RTLS) landings.
At the same time, Falcon boosters have two sizes of cold-gas thrusters, with much larger high-performance (>10 kN) pods – located on the larger of the booster’s two raceways – focused on settling the rocket’s propellant after recovery-related coast periods. A duo of smaller 3-axis pods situated on the outside of the interstage serve as true attitude control system (ACS) thrusters, precisely pointing, flipping, and orienting boosters during vacuum operations and partially augmenting grid fin control authority during the late stages of landings. Despite their much smaller size, they still pack an impressive punch and are famous for almost saving tipping Falcon boosters during early (failed) landing attempts.
Starhopper, meanwhile, is dramatically larger than the Falcon 9 and Heavy boosters its tacked-on ACS thruster pods were designed for. It’s hard to know for sure but safe estimates peg the testbed’s dry mass somewhere around 50-75 metric tons (110,000-165,000 lb) thanks to the thick steel it was constructed out of. In other words, Starhopper likely weighs at least twice as much as an empty Falcon 9 booster (~25 metric tons).
To alleviate this mismatch, SpaceX arrived at a hilariously simple and cheap solution: install double the number of grave-robbed Falcon 9 thruster pods on Starhopper and voila! It was that duo of thruster pod pairs that were tested on July 22nd, visibly producing four distinct jets of pressurized nitrogen gas. Whenever Starhopper gets to hopping, those ACS thrusters should help the rocket precisely control its rotation, attitude, and – to a lesser extent – translation, hopefully helping to ensure a successful inaugural hover and divert test.
Scheduled to occur no earlier than Wednesday, July 24th, SpaceX plans to deconflict Cargo Dragon’s CRS-18 launch and Starhopper’s hover test, meaning that they will not happen simultaneously. In the ~70%-likely event that bad Florida weather delays CRS-18 to Thursday, July 25th, the road before Starhopper will be clear for an attempted hover on the 24th. Additionally, also reported first by NASASpaceflight.com, the test is expected to involve a divert, meaning that Starhopper will lift off, hover roughly 20m (65 ft) off the ground, and then carefully travel a few hundred feet East to a recently-constructed concrete pad for a soft landing.
Note they will want to deconflict with CRS-18, so if that launch is still on (dodgy weather) then perhaps hours before, or after launch? OR, *personal wish!!* go from CRS-18 webcast and then pad cameras at Boca Chica on the SpaceX webcast! ?➡️?— Chris B – NSF (@NASASpaceflight) July 23, 2019
This divert was tacitly confirmed by the arrival of a robotic transport mechanism, already used once before to move Starhopper from its build site to the launch pad. If the divert goes as planned, the transport equipment will be used to return Starhopper to its spartan launch mount and ground support equipment (GSE) umbilicals.
If Starhopper survives and Raptor SN06 performs nominally, it’s all but certain that the testbed rocket will be put through a series of increasingly ambitious test flights over the coming months – at least before SpaceX’s first higher-fidelity “Mk 1” Starship prototypes begin their own flight tests. According to CEO Elon Musk, those Starship test hops and flights could begin as few as 2-3 months from now – September or October 2019.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.