Update: SpaceX says it and NASA are moving forward with plans to launch a Crew Dragon carrying US, Japanese, and Russian astronauts as early as noon EDT (16:00 UTC) on Wednesday, October 5th.
Concurring with a statement made on October 3rd, SpaceX has also called off a planned October 4th launch of its Starlink 4-29 mission. However, the company has delayed Starlink 4-29 just 24 hours and says that Falcon 9 will launch the latest batch of internet satellites out of California no earlier than (NET) 4:10 pm PDT (23:10 UTC) on October 5th. Intelsat has also confirmed that its Galaxy 33 and Galaxy 34 geostationary communications satellites are scheduled to launch on a Falcon 9 rocket as early as 7:07 pm EDT (23:07 UTC) on October 6th, leaving SpaceX on track to launch three Falcon 9 rockets from three launch pads in 31 hours.
The company achieved a similar feat earlier this year when it launched three Falcon 9 rockets in 36 hours. Three launches in 31 hours would break that record.
SpaceX is on the cusp of launching three Falcon 9 rockets in a handful of days. Minor issues with two of the three missions, however, have complicated the already hard process of coordinating so many launches at the same time.
For many reasons, rocket launches are an inherently difficult thing to schedule, and that difficulty only gets magnified when attempting to launch rockets as quickly as possible for customers with very different needs while using a fixed number of launch pads. SpaceX’s upcoming series of launches demonstrates the slippery nature of high-cadence rocket launch scheduling better than most.
Last month, SpaceX ran into issues (mainly bad weather) that delayed its Starlink 4-34, 4-35, and 4-36 missions by varying degrees. Before those delays, SpaceX had intended to break its LC-40 pad turnaround record with Starlink 4-35 and then repeat the feat with Starlink 4-36, but that opportunity closed when Starlink 4-34’s several weather delays pushed Starlink 4-35 from September 19th to the 24th and raised the risk of the next launch, Starlink 4-36, interfering with customer missions planned in the first half of October.
That burst of customer missions, all of which take priority over SpaceX’s own Starlink missions, meant that a few-day delay for a mission two launches prior ultimately pushed Starlink 4-36 from the end of September to no earlier than October 20th. It will launch out of Cape Canaveral Space Force Station’s (CCSFS) LC-40, the same pad that launched Starlink 4-35 on September 24th and will launch Intelsat’s Galaxy 33 and 34 satellites no earlier than (NET) October 6th and Eutelsat’s Hotbird 13F satellite NET October 13th. All four launches (including Starlink 4-36) are thus contingent upon each other, so a delay with one mission would likely delay each subsequent mission to leave enough time for pad turnaround and rocket processing.
Date Mission Rocket Location Pad 10/04/22 Starlink 4-29 Falcon 9 California VSFB SLC-4E 10/04/22 SES-20/21 Atlas V Florida CCSFS LC-41 10/05/22 Crew-5 Falcon 9 Florida KSC LC-39A 10/06/22 Galaxy 33/34 Falcon 9 Florida CCSFS LC-40 10/13/22 Hotbird 13F Falcon 9 Florida CCSFS LC-40 10/20/22 Starlink 4-36 Falcon 9 Florida CCSFS LC-40
SpaceX isn’t the only company that launches out of Cape Canaveral, Florida. Originally scheduled in late September, the United Launch Alliance’s (ULA) Atlas V launch of the SES-20 and SES-21 geostationary communication satellites was delayed by the same weather system that indirectly hampered Starlink 4-35 and 4-36. That mission is now set to launch NET 5:36 pm EDT (21:36 UTC) on October 4th.
Up first, however, is SpaceX’s Starlink 4-29 mission out of California’s Vandenberg Space Force Base (VSFB). Delayed to October 4th hours before its October 3rd target, the new schedule will give SpaceX “more time for pre-launch checkouts,” Falcon 9 will now lift off as early as 4:48 pm PDT (23:48 UTC), a little over two hours after Atlas V. However, making the whole situation even more interlinked, SpaceX says it will stand down from its October 4th Starlink launch attempt if its next Florida mission – Crew Dragon’s fifth operational NASA astronaut launch – remains on track for its current noon EDT (16:00 UTC), October 5th launch target.
In an October 3rd briefing following a mostly clean launch readiness review (LRR), NASA and SpaceX officials revealed that three new minor issues – “not showstoppers” – had appeared after a busy period of ground testing. An otherwise successful astronaut dry dress rehearsal and a subsequent wet dress rehearsal and static fire uncovered a possible fire extinguisher leak in the Dragon spacecraft and a minor issue with one of the Falcon 9 rocket booster’s nine Merlin 1D engines. A communications issue was also discovered on the SpaceX drone ship Crew-5’s rocket booster is meant to land on in the Atlantic Ocean.
SpaceX and NASA officials weren’t especially worried about the issues and were confident they would be resolved in time for an October 5th launch. If they aren’t and Crew-5 slips to October 6th, SpaceX should be able to launch Starlink 4-29 on October 4th, but then it’s unclear if the company will also be able to launch Intelsat’s Galaxy 33 and Galaxy 34 geostationary communications satellites on the same day as Crew-5. Galaxy 33/34 is scheduled to launch NET 7:07 pm EDT on October 6th, likely ~6 hours after Crew-5’s own October 6th launch window.
If Crew-5 slips and Galaxy 33/34 can’t launch on the same day, it would likely delay both Hotbird 13F and Starlink 4-36. It’s also unclear if Starlink 4-29 can launch on the same day as Crew-5 if it flies after Dragon. Either way, SpaceX could potentially end up launching Crew-5, Galaxy 33/34, and Starlink 4-29 on October 5th and 6th – potentially less than a day and a half apart.
As SpaceX continues to push the limits of what is possible with its existing Falcon launch and landing infrastructure, chaotic scheduling situations like this, where small issues impact large strings of launches, will become the norm instead of the exception
Elon Musk
Tesla engineers deflected calls from this tech giant’s now-defunct EV project
Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”
Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.
However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.
Apple canceling its EV has drawn a wide array of reactions across tech
It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.
Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”
Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.
In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”
Musk said in full:
“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”
Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.
Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.
Elon Musk
Tesla to a $100T market cap? Elon Musk’s response may shock you
There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.
However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.
To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:
“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”
Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.
SpaceX officially acquires xAI, merging rockets with AI expertise
Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”
It’s not impossible
— Elon Musk (@elonmusk) February 6, 2026
Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.
Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”