News
SpaceX to fly reused rockets on half of all 2018 launches as competition lags far behind
Speaking at SATELLITE 2018, SpaceX President Gwynne Shotwell reiterated the company’s commitment to and their customers’ acceptance of reusable rockets at the 2018, stating that SpaceX intends to fly reused boosters on at least half of their 2018 launch manifest.
Barring unforeseen circumstances, SpaceX is effectively on track to complete 30 separate missions this year with more than half flying flight-proven Falcon 9 (and Heavy) boosters. Thus far, the company has completed five launches – three flight-proven – in two months, perfectly extrapolating out to ~18 flight-proven missions and 30 total launches in 2018. While the middle weeks of March will not see any SpaceX launches, the company is on track to reach 11 flights total in late April/early March, six with reused boosters.
- SpaceX intends to launch three Falcon 9s from all three of its pads in just seven days. Pictured here their VAFB pad in California. (Pauline Acalin)
- LC-40, located in Cape Canaveral Air Force Station, is SpaceX’s second pad. (Tom Cross)
- Falcon Heavy roars off of LC-39A, SpaceX’s third operational pad. A fourth launch facility is under development in Texas. (Tom Cross)
Ignoring the tidal wave of reusable rockets
Ultimately, SpaceX’s scheduled launch cadence lends a huge amount of credence to Shotwell’s historically pragmatic claim. Assuming a successful introduction of Falcon 9 Block 5 sometime in April (currently April 5), SpaceX may even be able to get closer to flying reused boosters on two thirds of their 2018 launches, a truly jaw-dropping achievement for a year-old technology in an industry that previously saw minimal technological progress in rocketry for the better part of two decades, if not three or even four.
In almost every conceivable manner, SpaceX has taken a complacent industry by surprise, to such an extent that other major rocket builders have barely begun to develop their competitive responses to successful reuse. SpaceX’s main domestic and global competitors – ULA, Arianespace, and ILS – are at best five years away from more than dabbling in operationally reusable rocketry. ULA is in the best shape here, and their strategy of recovering just the engine segment of their future Vulcan rocket is unlikely to fly – let alone conduct the first real reuse of engines – before 2023 or 2024 at the absolute earliest, and reuse is by no means a public priority for the company.
SpaceX’s main competitors are at best five years away from more than dabbling in operationally reusable rocketry
At this point in time, Arianespace has been halfhearted for years in their attempts to seriously consider reusable rocketry. As of 2018, the closest they have gotten is a noncommittal study that would see the French and German space agencies field a Falcon 1-sized (tiny) vehicle to study the SpaceX approach to landing rockets. In the case of Arianespace, ULA, and ILS, their Ariane 6, Vulcan, and Proton Medium rockets currently under development for inaugural launches no earlier than 2020 have indeed all been explicitly designed to compete with SpaceX’s highly-competitive Falcon 9. Sounds promising, right? The reality, however, is that each distinct company has more or less designed their modernized rockets to compete with Falcon 9’s pre-reusability pricing. Even before SpaceX begins to seriously lower the cost of reused Falcon 9s at the customer level, their competitors are already incapable of beating the price of Falcon 9 and Falcon Heavy, at least without accepting net losses or leaning on government subsidies.
- Arianespace’s next-generation Ariane 6. (Arianespace)
- ULA’s upcoming Vulcan rocket. (ULA)
- ILS is developing a marginally different version of its Proton rocket, called Proton Medium. (ILS)
Arianespace’s Ariane 5 and ULA’s Atlas 5 and Delta 4 rockets do have impeccable and undeniably superior records of reliability, but SpaceX is making rapid progress towards enhanced reliability and unprecedented launch cadences. Falcon 9 Block 5 – SpaceX’s hard-won solution to rapid and cheaply reusable rocket boosters – is weeks away from its first launch, with something like six or more additional Block 5 boosters in the late stages of construction and assembly at SpaceX’s Hawthorne factory. The first prototype of BFR, a rocket designed with a fully-reusable booster and upper stage, has already begun to be assembled, with spaceship test hops scheduled to begin in 2019 and full-up orbital tests hoped to begin as early as 2020. Even with a pessimistic outlook on SpaceX’s BFR development prospects, the likelihood of orbital tests/operational launches beginning before the mid-2020s is incredibly high, barring insurmountable technological hurdles.
Whether or not SpaceX actually manages to begin its first flights to Mars in 2022 (even 2024-2026), BFR and its highly reusable orbital upper stage will swallow the launch industry whole if it manages to be even a tenth as affordable as its engineers intend it to be, and it will likely be in the late stages of hardware development and test launches before ULA, Arianespace, or ILS have even begun to operationally fly their tepid responses to reusability.

SpaceX’s BFR is being designed to launch crew, cargo, and fuel for unprecedentedly low prices. (SpaceX)
Follow us for live updates, behind-the-scenes sneak peeks, and beautiful photos from our East and West coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”
The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.





