News
SpaceX’s first crewed NASA launches remain on schedule for 2018
Plenty of work lies ahead of both companies, but progress abounds
Amidst a seemingly relaxed July for SpaceX, the company has been working intently with NASA to prepare for its first Commercial Crew mission in as few as seven months. NASA’s combination of strict technical requirements and partial flexibility with the famously fast-moving aerospace company have resulted in a collaborative environment that Elon Musk recently deemed beneficial to the company.
As NASA works with the company to ensure that Dragon 2 is as safe as realistically possible, SpaceX has begun several rounds of advanced testing and training. NASA astronauts are in the process of learning how to operate Dragon 2, and a near-production version of the vehicle’s control software and hardware has been integrated to allow for accurate simulations as practice. Meanwhile, Department of Defense personnel that will be tasked with recovering Dragons and crew from the ocean have begun developing those procedures with a mockup capsule.
- DoD personnel began initial recovery procedure development in July. (SpaceX)
- NASA astronauts utilizing the Dragon 2 simulator as they practice for the first crewed launch in June 2018. (SpaceX)
- A look inside Crew Dragon’s bare crew compartment. (SpaceX)
At SpaceX’s Hawthorne manufacturing facilities, four separate Crew Dragons are in different states of assembly. While one of those vehicles is intended solely for qualification testing, the three remaining Dragons will respectively launch into low Earth orbit throughout the course of 2018, assuming schedules remain firm. Structural testing and verification of the qualification Dragon was completed as of July 24th, and the first flightworthy Dragon has undergone testing of its pressure vessel to ensure that there are no leaks.
Looking forward to launching @NASA astronauts to the International Space Station next year!https://t.co/qoLtTEP4L8
— Elon Musk (@elonmusk) August 3, 2017
Deemed Demo-1 in relation to the first flight of Dragon being Demonstration Flight 1, SpaceX workers are almost ready to integrate the service section and pressure vessel compartments. The pressure vessel is better known as the crew compartment, while the service section is where all the necessary flight and life support systems are contained. Dragon’s “claw” – used to grab hold of the ISS upon docking – and engines have also passed qualification tests.

Different parts of the Demo-1 Dragon in Hawthorne. The crew compartment or pressure vessel can be seen on the left, while the heat shield is front and center. A second and possibly third Crew Dragon pressure vessel can be seen in the background. (SpaceX)
Possibly the most exciting of all, SpaceX has conducted the first pressurized tests of its in-house space suits with NASA crew members. While non-insiders have yet to catch a glimpse of the company’s suits, those lucky enough to have stolen a glance have indicated that they look awesome. As the company progresses to actual vacuum testing of the suits, fans can likely look forward to a reveal. While we don’t yet have a view of SpaceX suits, the July 24th Commercial Crew update did provide the first public photos of SpaceX’s crew access arm, set to be installed at the LC-39A launch pad later this year.
- NASA astronauts check out SpaceX’s recently-completed crew access arm. (SpaceX)
- Whether or not you can parse NASA’s infamous acronym and jargon-heavy language, it’s clear that SpaceX has a considerable amount of work ahead to make their February 2018 deadline. (NASA)
- For those with extreme willpower, a close study of this graphic provides a good idea of where both SpaceX and Boeing are as they head to first CCP launches. (NASA)
Aside from an array of milestones ahead for the company, the only major tasks yet to be finished are design finalization for Crew Dragon’s seat mechanisms and control displays. SpaceX’s Demonstration 1 and 2 launch dates of February and June 2018 respectively remain steady as of this late-July update. Delays are always possible and even likely, but chances are good that SpaceX will be ready to conduct the first launch of crew to the ISS before the end of next year.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.
Elon Musk
Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site
The update came in a post from the xAI Memphis account on social media platform X.
xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts.
The update came in a post from the xAI Memphis account on social media platform X.
In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie.
“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote.
xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.
The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.
xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.
Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.
News
Ford embraces Tesla-style gigacastings and Cybertruck’s 48V architecture
Ford Motor Company’s next-generation electric vehicles will adopt technologies that were first commercialized by the Tesla Cybertruck.
Ford Motor Company’s next-generation electric vehicles will adopt technologies that were first commercialized by the Tesla Cybertruck, such as the brutalist all-electric pickup’s 48-volt electrical architecture and its gigacastings.
The shift is expected to start with a roughly $30,000 small electric pickup that is expected to be released in 2027, which is part of Ford’s $5 billion investment in its new Universal EV platform, as noted in a CNBC report.
Ford confirmed that its upcoming EV platform will move away from the traditional 12-volt system long used across the auto industry. Instead, it will implement a 48-volt electrical architecture that draws power directly from the vehicle’s high-voltage battery.
Tesla was the first automaker to bring a 48-volt system to U.S. consumers with the Cybertruck in 2023. The architecture reduces wiring bulk, lowers weight, and improves electrical efficiency. It also allows power to be stepped down to 12 volts through new electronic control units when needed.
Alan Clarke, Ford’s executive director of advanced EV development and a former Tesla engineer, called 48-volt systems “the future of automotive” due to their lower costs and smaller wiring requirements. Ford stated that the wiring harness in its new pickup will be more than 4,000 feet shorter and 22 pounds lighter than that of its first-generation electric SUV.
Apart from the Cybertruck’s 48-volt architecture, Ford is also embracing Tesla-style gigacastings for its next-generation EVs. Ford stated that its upcoming electric vehicle will use just two major structural front and rear castings, compared with 146 comparable components in the current gas-powered Maverick.
Ford CEO Jim Farley has described the effort as a “bet” and a “Model T moment” for the company, arguing that system-level innovation is necessary to lower costs and compete globally. “At Ford, we took on the challenge many others have stopped doing. We’re taking the fight to our competition, including the Chinese,” Farley previously stated.





