Connect with us

News

Tesla battery researchers open path to all-electric range extender concept

Published

on

Tesla has solidified itself as an industry leader when it comes to electric vehicles and their range. However, an EV’s range could always be improved, and the company has taken great efforts to make this possible. One of these was outlined by Tesla’s battery researchers, who recently published the results of a test that cycles lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. This particular innovation could open the door to an all-electric range extender.

Other automakers have used range extenders in the past, but they’ve been comprised of small petrol-powered engines that are used as a generator to recharge the vehicle’s battery pack when it is low on range. The process of cycling lithium metal on graphite, on the other hand, could lead to a 20% higher energy density than the traditional lithium-ion cells that power the Tesla’s vehicles.

Tesla’s battery research team, led by Jeff Dahn of Dalhousie University, has found a way to create a range extender of sorts without having to keep a small gas engine in the vehicle. Tesla detailed its findings in a research paper that was published to ScienceDirect on April 30. Titled “Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells,” Dahn and his researchers outlined the testing process.

The findings proved a possible 20% increase in range when using the range extender, which is comprised of “hybrid cells” that use Lithium-Ion and Lithium Metal. The cells also used an optimized electrolyte, and pressure enabled reversible plating on graphite.

The paper states:

“A hybrid anode cell design is proposed involving lithium metal plating on top of graphite that provides a 20% increase in energy density over conventional lithium-ion cells. Pouch cells with hybrid graphite-lithium metal anodes cycled with conventional electrolytes fell below 80% capacity in under 15 cycles. However, with a dual-salt electrolyte and applied mechanical pressure optimized for lithium metal cycling, hybrid cells achieved over 150 full (100% utilization) cycles before falling below 80% capacity with a CE of 99.6% for lithium metal plating on graphite.

“We also found that intermittent high energy (100% utilization) cycles utilizing lithium metal can be dispersed among hundreds of conventional lithium-ion cycles where only the graphite is utilized. Operating the cell with this intermittent protocol shows minimal impact to the underlying graphite capacity. Therefore, these hybrid cells can operate well in “lithium-ion mode” with periodic high energy full cycles accessing the lithium metal capacity.”

Tesla’s new findings show that increased energy density is made possible with the hybrid concept. When combining lithium-ion cells with lithium metal, energy density improves as the graphite anode utilized in traditional lithium-ion cells is not capable of handling the increased energy. The utilization of a dual-salt electrolyte also increases density and decreases battery cell degradation.

Tesla’s battery researchers described the advantages of the hybrid lithium-ion/lithium metal cells in the discussion below.

“If an electric vehicle with a conventional lithium-ion battery can deliver a range of 400 km, then hybrid cells could enable a range of 480 km. By capping the upper cut-off voltage of hybrid cells to operate in lithium-ion mode, the average cell voltage and delivered capacity will decrease. As a result, operating a hybrid cell in lithium-ion mode delivers an energy density of 530Wh/L, about 25% less than a conventional lithium-ion cell.

Advertisement

“This would result in a range of 300 km. In a study of driving behavior for EVs, Smart et al.34 showed that only 1% of daily trips are longer than 325 km on average. Therefore, operating hybrid cells most of the time in lithium-ion mode enabling a range of 300 km, while periodically using the lithium metal portion for long > 400 km trips, as mimicked by this testing protocol, should be viable for most drivers.”

It should be noted that the Tesla battery researchers’ study is only in their initial stages. Thus, it may take some time before the technology gets rolled out to Tesla’s fleet. The wait would likely be worth it though, as the hybrid cells could open the door to all-electric vehicles with range extender features. This would be incredibly useful for electric vehicle owners who take long road trips with family, and it could also be a notable step towards EVs gaining range parity with their petrol-powered counterparts.

Joey has been a journalist covering electric mobility at TESLARATI since August 2019. In his spare time, Joey is playing golf, watching MMA, or cheering on any of his favorite sports teams, including the Baltimore Ravens and Orioles, Miami Heat, Washington Capitals, and Penn State Nittany Lions. You can get in touch with joey at joey@teslarati.com. He is also on X @KlenderJoey. If you're looking for great Tesla accessories, check out shop.teslarati.com

Advertisement
Comments

Elon Musk

Elon Musk’s Boring Company opens Vegas Loop’s newest station

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Published

on

Credit: The Boring Company/X

Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Fontainebleau Loop station

The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.

The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.

Vegas Loop expansion

In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.

Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.

The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.

Continue Reading

News

Tesla leases new 108k-sq ft R&D facility near Fremont Factory

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

Published

on

Credit: Tesla

Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay. 

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

A new Fremont lease

Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.

As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.

Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.

AI investments

Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.

Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.

Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.

Advertisement
Continue Reading

News

Tesla winter weather test: How long does it take to melt 8 inches of snow?

Published

on

Credit: Teslarati

In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.

I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?

Tesla Model Y Performance set for new market entrance in Q1

Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.

It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.

The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.

Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown

Observations

I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.

I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.

The rest of the test was sitting and waiting.

It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.

However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.

It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.

Check out the video of the test below:

Continue Reading