News
Tesla’s in-house Dojo chip teased by legendary engineer ahead of AI Day
Ahead of Tesla’s AI Day scheduled for August 19th, legendary mechanical engineer Dennis Hong has teased a picture of what could be Tesla’s Dojo Chip. While Dojo is a Supercomputer that Tesla Head of Autonomy Andrej Karpathy released photographs of recently, Dojo uses an in-house chip, according to Elon Musk, along with a computer architecture optimized for Neural Net Training.
Hong, who has been a professor at the University of California, Los Angeles Samueli School of Engineering for several years, has an interest in robotic platforms, autonomous vehicles, and machine design. Interestingly, in 2011, Hong presented a TED Talk about the possibilities of making a car for blind people. During the presentation, Hong told attendees about the DARPA Urban Challenge, where he and his team of engineers developed a fully autonomous car that would automatically reach its destination without intervention. In 2007, when the Urban Challenge was completed, Hong and Co. placed third in the competition, taking home a cool $500,000 prize to continue developing self-driving techniques, among other things.
Hong dished out some added anticipation to Tesla’s AI Day event by sending out a picture of what is likely the in-house chip that Musk talked about in September 2020. “Dojo uses our own chips,” Musk said. Unlike most automakers, Tesla aims to develop most of its software and hardware in-house, especially when it comes to its autonomy projects. While Hong was unwilling to confirm or deny what his professional relationship with Tesla is, his expertise could likely have contributed to the development of Dojo and the autonomous driving project that the company has worked on for years.
#Tesla #AI day
August 19, 2021
Palo Alto, CA
5 p.m. PDT pic.twitter.com/4zsP9cVxh5— Dennis Hong (@DennisHongRobot) August 3, 2021
Tesla has been developing its own chips since 2016, led by Jim Keller. Ultimately, Tesla wanted to design chips in-house so it knew all of the components and could likely sell the chip to other manufacturers later on. In 2019 at Autonomy Day, it unveiled Hardware 3.0, a chip that Elon Musk said was “objectively the best chip in the world.” Earlier this year, it was rumored that Tesla was working with Samsung to develop a new 5nm semiconductor chip that would assist with autonomous driving software.
Dojo is undoubtedly being developed in-house, but that does not mean Tesla will not attempt to gain the expertise and experience of some of the world’s most intelligent and accomplished engineers. With at least 14 years of experience in the field of self-driving cars, Hong may be the perfect candidate to help Tesla perfect and unveil the future of autonomous driving later this month. At AI Day, it is unknown what will be talked about or released as of right now, but there is obvious speculation that details regarding Tesla’s long-awaited Dojo could be released.
After announcing Dojo last year, Musk and Co. have remained relatively quiet regarding its development, but the company has continuously released updates to its Full Self-Driving Beta suite. Musk says updates will come “every 2 weeks on Friday” at midnight Pacific Standard Time.
Despite Tesla’s development and incremental improvements with nearly every software update, it is nowhere near completed. Instead, the strategy was to transition Tesla’s entire FSD strategy from what Musk called ~2.5D to 4D. Essentially, Musk wanted to transition the FSD Neural Network to a video format. Adding timestamps for more accuracy, the complexity of Dojo is likely something that will not only improve the accuracy of Tesla’s vehicles when FSD and Autopilot are operational, but it also will increase performance at a more drastic rate due to the increased rate of data capture. The massive amount of data that Dojo will comprehend requires one of the world’s strongest and most robust computer systems.
While Tesla hinted toward the release of Dojo late last year, it will not be ready until late 2021 at the earliest. It is unknown if Tesla will unveil Dojo at the event or give a simple progress update.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.