Connect with us
tesla 4680 tesla 4680

News

Tesla and the EV sector’s growth is driving up lithium, cobalt, and nickel prices

Credit: Tesla Inc.

Published

on

The electric vehicle revolution is fully underway. Led by successful vehicles like the Tesla Model 3, which are compelling alternatives to comparable internal combustion cars, EV sales are taking off. The momentum of EVs as a whole may hit some challenges soon, however, partly due to the rising prices of raw materials that are critical to the production of batteries. 

The prices of lithium-ion batteries have seen a 90% decline to just about $130 per kWh. That’s very close to the widely targeted $100 per kWh level, which is estimated to be the point where EVs could become fully competitive with ICE cars in terms of cost. Expectations were high that the battery industry would hit $100 per kWh in 2024, but recent trends in the market suggest that this may not necessarily be the case. 

Increasing EV Demand

Benchmark Mineral Intelligence, a company that tracks the worldwide battery supply chain, noted that lower costs helped boost EV sales by 112% in 2021 to over 6.3 million units globally from the previous year. And sales are only poised to increase. EV leader Tesla, which sold nearly a million pure electric cars on its own in 2021, is looking to grow its deliveries by 50% this year — and estimates among TSLA bulls suggest that the company’s growth might be even more impressive. 

Benchmark Mineral Intelligence notes that battery-grade cobalt prices are up 119% from January 1, 2020 through mid-January 2022. Nickel sulfate prices saw a 55% rise in price, and lithium carbonate saw a whopping 569% increase. Benchmark Mineral Intelligence chief data officer Caspar Rawles, in a statement to The Wall Street Journal, noted that some battery cell makers that typically offered long-term fixed-price contracts have ended up shifting to a variable price model instead. This allowed them to pass on some of the costs of rising material prices to consumers. 

What is quite unfortunate is that battery materials may remain in short supply for some time. China, which dominates the battery supply chain, is also aggressively increasing its electric vehicle production. And considering that it generally takes about seven to ten years to deploy a new mine, a lot of key battery components may end up being supply-constrained in the coming years

Advertisement
-->

Addressing A Supply Shortage

The rising prices of battery raw materials do not mean that the EV revolution would likely be slowed down, however. The battery recycling industry is now gaining some momentum, with companies like Redwood Materials — which is led by Tesla co-founder and former CTO JB Straubel — already preparing to sell recycled battery components to Panasonic for the production of battery cells at Tesla’s Gigafactory Nevada later this year. This helps foster a closed-loop system since Redwood also receives Panasonic’s battery scrap from Tesla’s Nevada facility. 

Other initiatives that may help the auto sector weather the rising costs of battery materials involve a focus on batteries that use less expensive, more abundant components. Tesla China is among the companies that are at the forefront of this movement, with Giga Shanghai utilizing lithium iron phosphate (LFP) batteries for the Model 3 and Model Y. LFP batteries utilize iron in their cathodes instead of nickel and cobalt, making them less controversial and far more affordable. 

And while LFP batteries typically result in vehicles with shorter range than cars equipped with nickel-based cells, tests from veteran electric vehicle owners in countries such as Norway are starting to reveal that iron-based cells are nothing to scoff at. Longtime EV advocate Bjorn Nyland, for example, recently conducted one of his 1,000-km tests in a base Model 3 equipped with an LFP battery that was produced in Gigafactory Shanghai. The vehicle performed amazingly despite the cold conditions and its relatively small 60 kWh battery pack. 

Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Investor's Corner

Tesla analyst maintains $500 PT, says FSD drives better than humans now

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Published

on

Credit: Tesla

Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers. 

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Analysts highlight autonomy progress

During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.

The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report. 

Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”

Advertisement
-->

Street targets diverge on TSLA

While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.

Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements. 

Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs. 

Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading