Connect with us

News

Tesla Model 3 battery details revealed in partial teardown and analysis

[Credit: Jack Rickard/YouTube]

Published

on

The Tesla Model 3’s battery pack was given a partial teardown treatment recently, thanks to the efforts of automotive veteran Jack Rickard and his team at EVTV. Rickard, a car enthusiast who conducts electric vehicle conversions, was ultimately impressed with how the Model 3’s battery was assembled, as well as the refinement of its design.

Rickard’s team was able to acquire the battery pack from a totaled Model 3. Upon removing the pack from the vehicle, the electric car conversion specialist’s interest was piqued by the covering of the battery modules. According to Rickard, the sections of the battery pack directly above the Model 3’s 2170 cells had a thin pad that was strangely wet.

This particular section mentioned by Rickard appear to be the “fluff” that Elon Musk mentioned during Tesla’s Q1 2018 earnings call. According to Musk, the fiberglass mats, which are placed on top of the battery pack, became one of the scenarios that proved human hands can work better than robots.

“They’re basically fluff. We tried to automate the placement and bonding of fluff to the top of the battery pack, which was ridiculous. ‘Flufferbot,’ which was really an incredibly difficult machine to make work. Machines are not good at picking up pieces of fluff. Hands are way better at doing that,” Musk said.

Another particularly compelling observation highlighted by Rickard was that the four modules of the Model 3 battery pack were not identical, with two modules featuring 25 cell groups in series and the other two featuring 23 cell groups in series. Rickard’s team did not tear down the battery packs down to its individual 2170 cells, but it was mentioned that each one of the cell groups includes 46 2170 cells that are connected in parallel. Overall, the vehicle appears to have a total of 4,416 2170 cells, at least for the Model 3’s long-range RWD configuration.

Advertisement
-->

The Model 3’s battery weighs 1,054 pounds, which, according to the group, places the energy density of the pack at around 168 Wh/kg. The individual modules of the Model 3 battery are lined with a ribbon-like circuit that goes across the top of the modules and into a BMS board. The BMS boards are sub-boards that are installed on each module, and are, in turn, connected to a main board using only two pins. 

One of the Model 3 battery pack’s BMS boards. [Credit: Jack Rickard/YouTube]

Ultimately, the EVTV team was impressed with the Model 3’s battery, with Rickard even dubbing it as the “best battery ever built to date.” The electric car conversion specialist also noted that the Model 3 battery would likely be a favorite among the DIY community. Considering that Tesla is attempting to achieve a production rate of 5,000 Model 3 per week by the end of Q2 2018, Rickard noted that the electric car’s batteries would probably be abundant in the market. This bodes well for DIY enthusiasts like Rickard, who could utilize the modules as batteries for RVs, home battery units, and electric car conversions, among other projects.

Jack Rickard and his team’s observations about the Model 3’s battery are in line with the findings of Sandy Munro during his firm’s teardown of the vehicle. In a recent episode of Autoline After Hours, Munro dubbed the Model 3’s pack as the best in the industry, noting the .2 milliamp differential between each of the battery blocks.

“Nobody can balance batteries that close. Nobody. Nobody’s ever done that,” Munro said.

Watch Jack Rickard and his team’s Model 3 battery teardown in the video below.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Investor's Corner

Tesla analyst maintains $500 PT, says FSD drives better than humans now

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Published

on

Credit: Tesla

Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers. 

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Analysts highlight autonomy progress

During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.

The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report. 

Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”

Advertisement
-->

Street targets diverge on TSLA

While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.

Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements. 

Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs. 

Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading