News
Tesla Model S on Autopilot crashes into stalled van on highway
A Tesla Model S crashes into the back of a stalled vehicle on a highway. Who is responsible, Autopilot, TACC, or the driver? Ultimately, we know the answer but not everyone wants to admit it.
A Tesla Model S on Autopilot crashed into the back of a stalled van in the high speed lane of a highway this week. The owner Chris Thomann who caught the accident through his dash cam believes it shows the Traffic Aware Cruise Control/Autopilot feature of his car malfunctioned. According to the description on Thomann’s YouTube video, he claims Autopilot and TACC have worked flawlessly many times before, but this time “The forward collision warning turned on way too late, it was set to normal warning distance”.
Updated: The original YouTube video has been marked as private so we added this animated gif via CNET showing the events of what happened.
There have been several instances lately in which Tesla drivers claim their cars malfunctioned, leading to collisions. Is there something wrong with these systems that people should be aware of?
The answer appears to be “No.” On Reddit, Tesla owner Ricodic took the time to post this language from page 69 of the Model S owner’s manual:
Warning: Traffic-Aware Cruise Control can not detect all objects and may not brake/decelerate for stationary vehicles, especially in situations when you are driving over 50 mph (80 km/h) and a vehicle you are following moves out of your driving path and a stationary vehicle or object, bicycle, or pedestrian is in front of you instead. Always pay attention to the road ahead and stay prepared to take immediate corrective action. Depending on Traffic-Aware Cruise Control to avoid a collision can result in serious injury or death. In addition, Traffic-Aware Cruise Control may react to vehicles or objects that either do not exist or are not in the lane of travel, causing Model S to slow down unnecessarily or inappropriately.
The problem is not with the software, it is with human drivers. It’s not that we don’t trust the technology; it’s that we trust it too much. We assume it means we can read the paper on the way to work or fall asleep at the wheel. We get lulled into a sense of false security by how well Autopilot and TACC work most of the time. The failure is in the human brain, which needs a moment or two to recognize that an emergency is in the making and that it is time to re-assert control over the vehicle.
Tesla owner Jarrod Overson spoke about this candidly in a post on Medium after his car suffered a collision in April. “Once I recognized the car was stopped in front of me, I explicitly remember panicking with the following thoughts going through my head: “Does my car see this? Is it going to do anything? NO. NO IT ISN’T. EMERGENCY.” In retrospect, the actions I needed to take were obvious . I should have regained control immediately. That half of a second or more probably would have made a lot of difference. The problem is that my brain wasn’t primed to have that conversation with itself. Now it is.”
Overson knew some would take him to task for his error in judgment. “I’m not looking forward to the comments calling me stupid for not doing this automatically, but I felt like it’s an important topic to be open about. I’d wager we all had a time in our lives where we didn’t know the extent of some technology, trusted it too far, and had to recalibrate after we understood the limits. Now we might just have to be a little bit luckier to get to that recalibration stage.”
It’s what autonomous driving experts refer to as “the handoff,” that brief period of time between when everything is going along serenely and when it is not. It’s when the computer suddenly finds itself in one of what Elon Musk calls a “corner case.” Those are instances that requires human input. Often, drivers have less than a second to react.
As good as Autopilot is — and it is getting better all the time — Tesla drivers still must be aware that the company and the software expect them to step in when necessary. Many put too much faith in the technology and are willing to abdicate ultimate responsibility for the operation of the car to machines.
The glowing praises we often hear from Elon make it easy to do. Perhaps Musk and Tesla could back their statements about the wonders they have created down a notch. Not everyone reads every page of the owner’s manual and even fewer commit everything found in the instructions to memory.
Elon Musk
Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report
The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Potential Giga Nevada tunnel
Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.
The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.
Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

Relieving I-80 congestion
Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.
Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate.
“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated.
News
Tesla might have built redundancies for Cybercab charging
When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging.
A newly spotted panel on Tesla’s Cybercab prototype may point to a practical backup for the vehicle’s wireless charging system as it nears mass production.
Tesla watchers have speculated that the panel could house a physical NACS port, which would ensure that the autonomous two-seater could operate reliably even before the company’s wireless charging infrastructure is deployed.
Cybercab possible physical charge port
The discussion was sparked by a post on X by Tesla watcher Owen Sparks, who highlighted a rather interesting panel on the Cybercab’s rear. The panel, which seemed to be present in the prototype units that have been spotted across the United States recently, seemed large enough to house a physical charge port.
When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging. Since then, however, Tesla has remained largely quiet about the system’s rollout timeline. With the Cybercab expected to enter production in a few months, equipping the vehicle with a physical NACS port would allow it to charge at Superchargers nationwide without relying exclusively on still-undeployed wireless chargers.
Such an approach would not rule out wireless charging long-term. Instead, it would give Tesla flexibility, allowing the Cybercab to operate immediately at scale while wireless charging solutions are rolled out later. For a vehicle designed to operate continuously and autonomously, redundancy in charging options would be a practical move.
Growing Cybercab sightings
Recent sightings of the Cybercab prototype in Chicago point to the same design philosophy. Images shared on social media showed the vehicle coated in road grime, while its rear camera area appeared noticeably cleaner, with visible traces of water on the trunk.
The observation suggests that the Cybercab is equipped with a rear camera washer. As noted by Model Y owner and industry watcher Sawyer Merritt, this is a feature Tesla owners have requested for years, particularly in snowy or wet climates where dirt and slush can obscure cameras and degrade the performance of systems like FSD.
While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip additional exterior cameras with similar cleaning systems. For a vehicle that operates without a human driver, after all, maintaining camera visibility in all conditions is essential. Ultimately, the charge-port speculation and camera-washer sightings suggest Tesla is approaching the Cybercab with practicality in mind.
News
Tesla Model Y dominated China’s NEV sales in December 2025
As per sales data from China, the all-electric crossover finished first among the country’s best-selling EVs and plug-in hybrids.
The Tesla Model Y ranked as China’s top-selling new energy vehicle in December, leading an intensely competitive market packed with strong domestic brands.
As per sales data from China, the all-electric crossover finished first among the country’s best-selling EVs and plug-in hybrids. The Model 3 also placed within the country’s top ten vehicles.
Model Y leads China’s NEV rankings
The graphic, shared on X and sourced from Chinese auto industry data aggregator Yiche, listed the top 20 best-selling new energy vehicles in China for December. Tesla’s Model Y claimed the No. 1 position with roughly 65,874 units sold, finishing well ahead of a field dominated by domestic manufacturers such as BYD, SAIC-GM-Wuling, and Xiaomi.
The chart also showed strong performances from other high-volume models, including BYD’s Qin Plus, which sold 46,837 units during the month. Tesla’s Model 3 ranked eighth overall, with just under 28,000 units sold, placing it ahead of numerous locally produced competitors despite its rather premium price.
Tesla China’s strong December
Tesla China had a stellar December 2025. During the month, Tesla sold 97,171 vehicles wholesale in China, as per data from the China Passenger Car Association (CPCA). The result marked Tesla China’s second-highest monthly total on record, trailing only November 2022’s peak of 100,291 units.
December’s wholesale figure represented a 3.63% increase from the same month a year earlier and a 12.08% jump from November. Industry watchers have suggested that part of the surge was driven by Tesla pulling deliveries forward to allow customers to benefit from more favorable purchase tax policies before year-end.
Despite this, December’s results suggest that Tesla’s Model Y and Model 3 remain highly competitive offerings in China, which is extremely impressive considering the competition from domestic players and their still premium price.