News
Tesla Semi gets ‘peppy and quiet’ hydrogen fuel cell competitor from Kenworth-Toyota
With support from the California Air Resources Board, Japanese auto giant Toyota and truck maker are collaborating to develop and build a limited run of hydrogen fuel trucks. The vehicles, which are Kenworth T680 trucks modified with Toyota’s hydrogen fuel cell powertrains, are expected to drive on routes around Los Angeles and further inland to San Bernardino. The actual specs of the vehicles have not been announced by either company, but the range of the hydrogen fuel cell T680 trucks are said to be 300 miles in “normal drayage operating conditions.”
Toyota and Paccar, the parent company behind Kenworth, took the wraps off the first hydrogen fuel cell long-hauler at this month’s Consumer Electronics Show in Las Vegas. The vehicle, which is classified as a Class 8 truck, stands to be a possible competitor for upcoming all-electric trucks like the Tesla Semi in the future. In a statement to CNBC, Brian Lindgren, Kenworth’s director of research and development, noted that utilizing hydrogen as a source of propulsion makes more sense for Class 8 vehicles than batteries, which power vehicles like Tesla’s all-electric long-hauler.
“We believe that carrying energy in the form of hydrogen for heavy-duty Class 8 trucks makes more sense than carrying it in batteries because the trucks can be refilled faster and offer longer range,” he said.
Lindgren’s point about faster refilling times for hydrogen fuel cell vehicles is quite justified, considering that a passenger car such as a Toyota Mirai could refill its tank with around 300 miles of range in roughly five minutes. That’s significantly faster than Tesla’s Superchargers, which are capable of charging roughly 200 miles of range in 30 minutes. Larger vehicles such as the hydrogen-electric Kenworth T680 trucks would likely take longer to refill than a passenger car such as the Mirai, but there’s a good chance that the long-hauler could still refill its tank faster than the Tesla Semi could charge its batteries, even if it is plugged into the upcoming Megacharger Network.
Toyota-Paccar’s Kenworth T680 hybrid fuel cell trucks caught the attention of some CES attendees due to the vehicle’s silent operation, which is nearly comparable to an all-electric truck. Lindgren, for his part, noted that drivers who have operated the truck actually appreciated the silence of the vehicle. “Drivers like these trucks because they are peppy and quiet,” he said.
Andy Lund, the Toyota chief engineer on the project, further stated that the hydrogen-electric trucks would have the same payload capacity as a diesel rig. Unlike its fossil fuel-powered counterparts, the hydrogen fuel cell Kenworth T680 long-haulers would only require a four-speed transmission, which is far simpler than the 18-gear transmissions usually fitted on Class 8 diesel trucks.
If there is one thing that would probably go against Toyota and Paccar’s hydrogen trucks, though, it would be their fuel efficiency. Kenworth’s director of research and development noted that the prototype trucks currently consume hydrogen at roughly the same rate as present diesel trucks, at around 5-7 mpg. The only advantage of the vehicles, of course, is that the trucks would only produce water vapor from their exhausts. This is a substantial advantage, considering that the trucking industry accounts for about 23% of carbon emissions from transportation in 2016, according to the Environmental Protection Agency.
That said, this would be something that Tesla could capitalize on. During the electric long-hauler’s unveiling, Musk noted that the Semi would cost operators $1.26 per mile to run, less than the standard $1.51 per mile that diesel-powered vehicles cost. Musk’s estimate has been met by skepticism by veterans of the trucking industry, but if the Tesla Semi’s operating costs stay true to the CEO’s estimate, then the vehicle would most certainly give itself a notable advantage over diesel and hydrogen-powered rivals when it starts operating on America’s roads.
Hydrogen fuel cells remain a polarizing solution for sustainable transportation. Elon Musk, for one, has openly discussed his dislike for hydrogen-electric transportation. In a statement to Autocar in 2014, for one, Musk went so far as to describe hydrogen fuel cell systems as “mind-bogglingly stupid.”
“They’re mind-bogglingly stupid. You can’t even have a sensible debate. Consider the whole fuel cell system against a Model S. It’s far worse in volume and mass terms, and far, far, worse in cost. And I haven’t even talked about hydrogen being so hard to handle. Success is simply not possible. Manufacturers do it [FCEVs] because they’re under pressure to show they’re doing something ‘constructive’ about sustainability. They feel it’s better to be working on a solution a generation away rather than something just around the corner. Hydrogen is always labeled the fuel of the future – and always will be,” Musk said.
Elon Musk initially announced that the Tesla Semi would start production sometime in 2019. That said, later statements from Tesla’s head of investor relations Martin Viecha suggested that the electric car maker would “earnestly” start producing the Semi by 2020.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.