Connect with us

News

Tesla Supercharging time could be cut by 60% with new charging curve tech

(Credit: Tesla China/Weibo)

Published

on

Time spent at Tesla Superchargers could be cut by as much as 60% with new charging curve technology.

According to New Scientist, research conducted at the Idaho National Laboratory can charge EV batteries from a 0% state of charge to 90% in 10 minutes, equating to a 60% decrease in charging time compared to current Supercharger times. Because this only requires simple software changes, automakers can implement the improvement without physically changing the battery chemistry of battery management systems.

Anyone with an EV knows that charging electric vehicles is a balancing act between speed and battery health. Charge too quickly, and the internal battery chemistry is damaged as the anode and cathode are corroded. But charging slowly can be inconvenient when trying to get back on the road. Hence, “charging curves” (graphs of charging wattage) are programmed into battery management devices to perform this balancing act.

Researchers attempted to reduce charging times on large batteries while maintaining battery health and limiting themselves to current battery chemistry technology. And by implementing AI and altering amperage and voltage over time, the researchers could charge batteries from 0%-90% in 10 minutes. With the test batteries the researchers were using, this task usually took a minimum of half an hour. A charging time that closely mimics Tesla charging via Supercharger stations.

Researchers stated that one of the benefits of their technology is that it could feasibly be applied via OTA update, requiring no physical changes to batteries or battery management systems.

Advertisement
-->

While this significant jump in charging tech is impressive, researchers also pointed out that the more critical technological leap will come in changing battery chemistries over the next decade. And while solid state technology constantly seems to be around the corner, we may be closer than ever to achieving the dream of significantly more energy-dense batteries.

The real question is whether automakers will implement this technology or any other technology presented at the American Chemical Society meeting last month. Neither researchers nor the Idaho National Lab has indicated if any battery manufacturers or automakers are working to implement this fantastic technology.

What do you think of the article? Do you have any comments, questions, or concerns? Shoot me an email at william@teslarati.com. You can also reach me on Twitter @WilliamWritin. If you have news tips, email us at tips@teslarati.com!

Will is an auto enthusiast, a gear head, and an EV enthusiast above all. From racing, to industry data, to the most advanced EV tech on earth, he now covers it at Teslarati.

Advertisement
Comments

News

Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo

“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.

Published

on

Credit: Grok Imagine

NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance. 

More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system. 

Jensen Huang’s praise for Tesla FSD

Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”

During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:

“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies. 

Advertisement
-->

“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said. 

Nvidia’s platform approach vs Tesla’s integration

Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.

“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.

He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.

“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”

Advertisement
-->

He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.

Continue Reading

Elon Musk

Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

Published

on

Credit: xAI/X

xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters. 

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

xAI’s turbine deal details

News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.

As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X. 

xAI’s ambitions 

Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”

Advertisement
-->

The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website. 

Continue Reading

Elon Musk

Elon Musk’s xAI closes upsized $20B Series E funding round

xAI announced the investment round in a post on its official website. 

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. 

xAI announced the investment round in a post on its official website. 

A $20 billion Series E round

As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others. 

Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.

As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”

Advertisement
-->

xAI’s core mission

Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.

xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5. 

“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote. 

Continue Reading