News
United Launch Alliance successfully test fires new Vulcan rocket
United Launch Alliance successfully test-fires new Vulcan rocket
Following a successful Flight Tanking Test (FTT), United Launch Alliance fired up the Vulcan rocket for the first time last night. The two Blue Origin-built BE-4 rocket engines ignited for 6 seconds and pushed ULA closer to their maiden launch of the rocket.
United Launch Alliance stated they are more than 98 percent through the qualification program for Vulcan, and after reviewing data from the Flight Readiness Firing (FRF) and closing the Centaur V anomaly investigation, they will then announce launch plans.
Ignition of the Blue Origin built BE-4 engines (Credit United Launch Alliance)
During this test firing, the BE-4 engines ignited at T- 4.88 seconds and ramped up to 60% power for 2 seconds before powering down.
The United Launch Alliance Vulcan Centaur rocket has faced many delays leading up to this moment, most recently experiencing an anomaly of the Centaur V upper stage that was undergoing qualification testing at the Marshall Space Flight Center in Alabama.
ULA is currently conducting an investigation into the cause of the anomaly, and according to ULA CEO Tory Bruno, they found the issue was on the Centaur upper stage itself, but they are still determining if changes will need to be made to its current flight article that is stacked on Vulcan.
? Let’s relive that beautiful #VulcanRocket Flight Readiness Firing! #CountdowntoVulcan ? pic.twitter.com/WqPe3jbpiW
— ULA (@ulalaunch) June 8, 2023
Prior to this unexpected issue, Blue Origin originally had planned to deliver two of their flight-ready BE-4 engines to ULA for integration onto the Vulcan rocket by 2020, but various delays in qualifications and testing meant their delivery slipped significantly to late 2022.
Following their integration onto the Vulcan rocket’s first stage, it was then shipped aboard ULA’s ‘RocketShip’ down the Mississippi River, through the Gulf of Mexico, and after rounding the southern tip of Florida to Port Canaveral, Florida, after which it was unloaded and then transported to the Vertical Integration Facility at Cape Canaveral Space Force Station.

Vulcan stands at SLC-40 prior to its Flight Readiness Firing (Credit United Launch Alliance)
This FRF test comes before the planned Summer launch of Vulcan Centaur carrying Astrobotics Peregrine Lunar lander and Amazon’s first two Kuiper satellites, their answer to the SpaceX Starlink satellite constellation.
Also known as the CERT-1 flight, the Vulcan Centaur rocket needs to perform 2 successful launches to qualify to launch national security payloads for the U.S. Space Force and other government payloads.
The second flight will feature the first launch of the Sierra Space Dream Chaser space plane, which will deliver supplies to the International Space Station. As of now, the majority of the payload manifest for Vulcan Centaur is Amazon’s Kuiper satellite constellation and U.S. Space Force national security missions.
The Vulcan Centaur rocket has a few configurations available to suit multiple payload sizes, the rocket can fly with just the 2 BE-4 engines delivering 1.1 million pounds of thrust at sea level to flying with 2, 4, or 6 solid rocket boosters and with 6 SRB’s it would bring its thrust up to 3.8 million pounds.
This would make the Vulcan Centaur capable of delivering 60,000 lbs (27,200 kg) to low Earth orbit or 25,400 lbs (11,500 kg) to the Moon. ULA is also working toward its SMART re-use system, which will allow the 2 BE-4 engines to separate from the first stage, and after an inflatable heatshield deploys, they would return to Earth and splash down for recovery and refurb for their next mission.
However, it is unknown when ULA will begin using this capability.
Questions or comments? Shoot me an email @ rangle1555@gmail.com, or Tweet me @RDAnglePhoto.
Elon Musk
SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report
The update was reportedly shared to Reuters by people familiar with the matter.
SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone.
The update was reportedly shared to Reuters by people familiar with the matter.
A possible Starlink Phone
As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.
SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.
Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.”
Starlink and SpaceX’s revenue
Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.
SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.
Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”
Elon Musk
FCC accepts SpaceX filing for 1 million orbital data center plan
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.
The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment.
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.
FCC opens SpaceX’s proposal for comment
In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.
The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.
FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.
What SpaceX is proposing to build
As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.
The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.
As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.
Elon Musk
Elon Musk’s Boring Company signs deal to begin Dubai Loop project
The project marks the Boring Company’s first tunneling project outside the United States.
Elon Musk’s Boring Company has signed a definitive agreement with Dubai’s Roads and Transport Authority to begin implementing the Dubai Loop.
The project marks the Boring Company’s first tunneling project outside the United States.
The Boring Company signs Dubai Loop agreement
The Boring Company signed a partnership agreement with Dubai Roads and Transport Authority on the sidelines of the World Governments Summit 2026 to start the implementation of the Dubai Loop, as per the tunneling startup in a blog post.
The agreement was signed on behalf of Dubai RTA by Mattar Al Tayer, director general and chairman of the Board of Executive Directors, and on behalf of The Boring Company by James Fitzgerald, the startup’s global vice president of business development. Senior officials from both organizations were present at the signing ceremony.
The Dubai Loop project is intended to improve passenger mobility in high-density urban areas through underground vehicle tunnels designed for faster construction and lower surface disruption than conventional transport systems.
Pilot route and project scope outlined
The first phase of the Dubai Loop will consist of a 4-mile (6.4 km) pilot route with four stations linking the Dubai International Financial Centre and Dubai Mall. The pilot phase is expected to pave the way for a full network extending up to 14 miles (22.5 km) with 19 stations connecting the Dubai World Trade Centre, the financial district, and Business Bay.
The tunnels will have a diameter of 12 feet (3.6 meters) and will be dedicated to vehicle transport. Construction will rely on tunneling methods designed to reduce costs and minimize disruption to existing infrastructure.
The pilot phase is estimated to cost about $154 million, with delivery expected roughly one year after design work and preparatory activities are completed. The full Dubai Loop network is projected to cost approximately $545 million and would take around three years to implement.
Capacity targets and next steps
Mattar Al Tayer shared his excitement about the project, stating that the Loop system will be a qualitative addition to the city’s transportation system. “The project represents a qualitative addition to Dubai’s transport ecosystem, as it enhances integration between different mobility modes and provides flexible and efficient first- and last-mile solutions.
“Studies have demonstrated the project’s efficiency in terms of capacity and operating costs, with the pilot route expected to serve around 13,000 passengers per day, while the full route is projected to have a total capacity of approximately 30,000 passengers per day,” he said.
Steve Davis, president of The Boring Company, highlighted that the partnership aims to deliver safe and efficient tunneling solutions aligned with Dubai’s long-term mobility strategy.
“We are proud to partner with the Roads and Transport Authority, one of the world’s leading entities in adopting innovative solutions in the transport sector. Through this partnership, we look forward to delivering advanced, safe, and highly efficient tunnelling solutions that support Dubai’s vision for sustainable and future mobility,” Davis stated.