Connect with us

News

An inside look at Tesla’s P100D battery pack: more cells, 102 kWh capacity, backwards compatibility in mind

Published

on

New details of Tesla’s mysterious P100D battery pack, which Tesla CTO JB Straubel once described as having notable changes in battery module and pack technology, and a “complete redo on the cooling architecture”, have emerged thanks to Jason Hughes’s latest project.

Hughes posted photos of a dismantled 100 kWh battery pack, which he obtained through the purchase of a salvaged Tesla P100D, that reveal an increase in the number of 18650 lithium-ion cells being packed within each battery module. Hughes also discovered a surprising increase in battery capacity beyond 100 kWh, and what appears to be a replaceable connector that allows Tesla to retrofit older vehicles with the newer battery pack.

More 18650 Battery Cells

As outlined in Hughes’s blog post, Tesla was able to fit more of its cylindrical 18650 lithium-ion battery cells into each of the 16 modules making up the P100D battery pack. It’s worth noting that Tesla has maintained a relatively similar form factor on battery packs produced for Model S and Model X vehicles since their introduction. Regardless of the vehicle’s model version – be it a P85, a 60, 75D, or 90D – the uniform skateboard design of the battery pack allows for ease of production, as Tesla can manufacture a single-style pack that can be installed across its fleet of vehicles. Under that same notion, Tesla has also been able to create ‘unlockable features’ by software limiting vehicle range depending on the option purchased by the customer. In other words, Tesla installs the same battery pack into like-kind vehicles (e.g. Model S 60 uses the same pack as Model S 75).

Tesla P85 battery pack module vs. P100D module [Credit: Jason Hughes via @wk057]

Hughes’s dissection of the P100D battery shows that Tesla leveraged the same design concept by distributing a total of 8,256 battery cells across the 16 modules making up the battery pack, bringing total capacity up to the advertised 100 kWh number. However, and much to Hughes’s surprise – he had previously criticized Tesla for providing less battery capacity than what’s perceived by way of the vehicle’s nameplate – Tesla actually provided 102.4 kWh of capacity on the P100D pack, representing a 2.4% increase over what’s marketed.

Backwards Compatible Design

Tesla has also, seemingly, taken into account the ability to retrofit new battery packs onto older vehicles by using the same high and low-voltage connectors across packs. According to Hughes, “the pack itself has the same high-voltage connection, the same low voltages connectors, and the same cooling connector.” However, Hughes notes that there’s subtle changes on the P100D pack that would require a new part in order for it to be retrofittable onto non-P100D vehicles.

“The [P100D] pack has the newer ring around the high-voltage connector. So, it’s plug-and-play (for the most part, firmware and config changes needed) on the Model X and refreshed Model S, however it would require a different spacer ring on the high voltage connector. Tesla even has a part number for it, so it should be pretty simple to put into any Model S/X.” says Hughes.

Advertisement

What about that new P100D battery cooling architecture?

Well. It’s not magic. Tesla did improve battery cooling in the new P100D 100 kWh battery pack. And Tesla did provide a redone architecture, but it isn’t one of mythical proportions.

Hughes reveals Tesla’s approach to improve battery pack cooling was to use shorter and thinner cooling loops per battery module, thereby improving the rate of heat dissipation. Unlike most other electric car makers who do not “prime” their vehicle’s batteries through the use of a thermal management system, Tesla pumps fluid through the battery module to regulate the temperature of its battery pack in order to bring them to optimal operating temperatures. By ensuring the lithium-ion cells operate within ideal temperatures, Tesla is able to provide the best performance possible, while ensuring cell longevity.

Tesla P100D battery module cooling loops [Credit: Jason Hughes]

Advertisement
Comments

Elon Musk

SpaceX is preparing to launch Starship V2 one final time

The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

Published

on

Credit: SpaceX/X

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era. 

Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.

Starship V3 and beyond

Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet. 

“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”

Starship V2’s final mission

Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.

Advertisement

“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns. 

“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.

Continue Reading

Elon Musk

xAI’s new facility will save Memphis 5 billion gallons of water annually

The project was described as a long-needed solution for the region as it will be capable of recycling up to 13 million gallons of greywater daily.

Published

on

Credit: xAI Memphis/X

Elon Musk’s artificial intelligence startup, xAI, has officially broken ground on its $80 million wastewater treatment facility in Memphis, Tennessee. The project aims to reduce strain on the Memphis aquifer by 9% and repurpose 20% of wastewater from the nearby Memphis T.E. Maxson wastewater facility that would otherwise flow back into the Mississippi River.

A major step towards sustainability

City officials, including Councilman J. Ford Canale and Memphis Chamber of Commerce CEO and President Ted Townsend, joined xAI staff at the October 10 ceremony. The project was described as a long-needed solution for the region as it will have a treatment capacity of 13 million gallons daily, which would then be used for industrial cooling use xAI and the Tennessee Valley Authority (TVA). 

This means that the facility will help conserve 5 billion gallons of potable water annually, easing demand on Memphis’ primary water system. At these levels, xAI Memphis noted that its wastewater treatment facility will feature the largest ceramic membrane MBR in the world, using 13,000 membrane modules that collectively span over 900,000 square feet, roughly the size of 16 football fields. 

Construction permits have been secured for the pump station, while the main operations permit from the Tennessee Department of Environment and Conservation remains under review.

A privately funded push

The wastewater treatment facility represents a rare privately funded water reclamation initiative, with xAI covering construction costs, as noted in a Yahoo News report. The company filed preliminary plans through its affiliate CTC Property LLC in 2024, hinting at the startup’s long-term commitment to sustainable infrastructure around its growing Memphis operations. TVA CEO and President Don Moul shared his excitement for the project.

Advertisement

“This is a big day for Memphis, Tennessee. This initiative not only reduces our need to purchase water from MLGW for our nearby Allen Combined Cycle Plant, but it also eases demand on the region’s potable water system. By recycling water for cooling purposes, we’re helping to preserve drinking water for the community and advancing a solution that benefits both the environment and the Greater Memphis area,” he said.

Continue Reading

News

Japan paves the way for Tesla Full Self-Driving domestic rollout

Tesla’s vehicles are allowed to be retrofitted with a software update that could enable the activation of self-driving features.

Published

on

Credit: Tesla AI/X

Japan seems to be taking some serious steps to pave the way for the domestic rollout of Tesla’s Full Self-Driving (FSD) system in the country. 

This was hinted at by a decision from the Ministry of Land, Infrastructure, Transport and Tourism Ministry.

FSD update

As noted in a report from Nikkei, Tesla’s artificial intelligence-powered vehicles are allowed to be retrofitted with a software update that could enable the activation of their self-driving features. These features would be rolled out through an over-the-air (OTA) software update for vehicles that have already been sold to consumers.

Previous reports have indicated that Tesla Japan has started the testing of FSD technology on public roads. At the time, reports indicated that Tesla Japan employees have been conducting the tests, and the company is planning to release its FSD software to consumers in the near future, at least pending compliance with safety standards and guidelines. 

New guidelines

In a comment on X, former Tesla Board Member Hiro Mizuno explained that the Ministry of Land, Infrastructure, Transport and Tourism Ministry’s decision is no small matter, as it could pave the way for the smooth rollout of features like FSD to Tesla consumers in Japan. 

Advertisement

“The Ministry of Land, Infrastructure, Transport and Tourism’s decision to allow retrofitting of autonomous driving through software updates is significant. Currently, Tesla is the only manufacturer actively pursuing this, but I had thought that if actual autonomous driving were to begin, it would be impossible to keep up if the approval process had to be repeated for every software update. As a result, this decision will make it easier for all manufacturers to introduce autonomous driving in Japan,” he wrote in a post on X.

Continue Reading

Trending