News
Tesla Model S vs. Toyota Mirai Comparison
With the introduction of the new hydrogen-powered Toyota Mirai (the name means “future” in Japanese), there has been a lot of media hype about vehicles that use hydrogen fuel cells as their power source. Toyota, Honda and a number of other automobile companies have announced plans to build cars based on fuel cell technology.
Fundamentally, a hydrogen fuel cell produces electricity via an electro-chemical reaction that drives an electric motor that creates the motive force for a car. The technology requires high-pressure storage of liquid hydrogen, a fuel cell to convert the H2 to electrons, a control system to deliver the resultant electricity to an electric motor and/or battery that in turn drives the wheels of the vehicle. It’s a workable, if somewhat complex system that produces zero emissions and water as a by-product.
In the media, there are three major claims that are being made about cars powered by hydrogen: (1) that H2 is a 21st century energy source and will ultimately become the preferred power source for automobiles; (2) that hydrogen-powered fuel cells represent a significant improvement in environmentally safe automotive fuel, and (3) that cars like the Toyota Mirai represent a major threat to battery electric vehicles (BEVs) like the Tesla Model S.
Are any or all of these claims true? We thought we’d take a look.
After going through the popular literature and government/academic reports, we decided that the best way to present the array of information collected was with an infographic, “Tesla Model S vs. Toyota Mirai: A Technology/Vehicle Comparison,” that examines four broad categories of concern:
- underlying technology that powers the vehicle
- the two vehicles themselves
- technology required for refueling the vehicle, and
- environmental impact
Tesla Model S vs. Toyota Mirai
Technology
EV technology has been around for 100 years. It represents a remarkably simple method for automotive power that is constrained solely by the capacity of the vehicle’s batteries. Fuel cells are evolving rapidly and provide more energy capacity than modern Li-Ion batteries, but they require liquid hydrogen to be stored on board the vehicle in pressurized tanks. The Tesla Model S has an energy capacity of either 60 kWh or 85 kWh while the Toyota Mirai produces 114 kWh. The overall energy efficiency (from an environmental viewpoint) of BEVs is dependent on the efficiency of the electric grid from which a BEV obtains its diet of electrons. The efficiency of hydrogen-powered cars is impacted by the process that extracts hydrogen from other sources and the method by which hydrogen is transported to a refueling station.
The winner: It’s close, but the simplicity of the BEV system gives the underlying technology of the Model S a slight edge.
The Vehicles
Both the Tesla Model S and the Toyota Mirai are expensive, but that’s the price of new technology. The Model S is a premium, high performance automobile in ever sense of the word. It is a visually beautiful car that conjures images of a Aston Martin or Jaguar and has been lauded as one of the best sedans in the world. It has won praise from virtually every automotive media source, and is one of the safest, roomiest cars on the planet. The Toyota Mirai has an eccentric look that gives it a boxy Prius-like feel. It appears to provide good, basic transportation, but it is not for those who want a bit more than good, basic transportation. Finally, the Tesla Model S is here today. By 2017, there will be about 160,000 Model S vehicles on the road. Toyota projects that only 3,000 Mirais will be in the field by the same date.
The winner: No contest! The Model S is far superior to the Mirai in virtually every respect except for range.
Fueling the Vehicle
In our view, one of the major benefits of BEVs is that you refuel them at home, overnight, while you’re sleeping, so that your Model S is “full” every morning. Unless you travel long distances on a regular basis, you will rarely need a Tesla Supercharger or any other refueling source away from home. That’s huge, and often get’s lost in the discussion of “range anxiety” that always seems to invade the thinking of those who don’t own a Model S. Although fuel cells are sexy, it seems odd to us that Toyota has returned to a 20th century fueling station paradigm. In essence, there is little difference between refueling a Mirai and refueling a Camry. Sure, the fuel is different, but you have to hunt for a specific refueling station as your Mirai slowly depletes its hydrogen. No charging at home—ever.
The winner: No contest! Refueling your vehicle at home is a convenience that represents 21st century thinking. Model S provides that convenience. Mirai does not.
Environmental Impact
Both the Model S and the Mirai are environmentally impressive. Both have zero emissions and relatively low “well-to-wheel” inefficiencies. In our view, the beauty of a BEV is that it becomes increasingly friendly to the environment as our electric grid infrastructure improves. There is no need to separately transport fuel to a refueling station (a requirement for a hydrogen fuel cell vehicle) eliminating both the cost and the environmental impact of secondary fuel transport.
The winner: It’s a toss up. Both cars are environmentally friendly and both will improve as the grid becomes cleaner and as hydrogen extraction processes become more efficient and cost effective.
As a young engineering student I was taught that when you consider alternative systems that both achieve the same result, always choose the less complex approach. That’s common sense, but it appears that when faced with the same choice, Toyota chose the more complex option. Possibly, their engineers or marketing people were driven by concern about range, but that’s simply not as big an issue as they think it is. BEVs represent simplicity, and in an increasingly complex world, that’s something that many consumers like.
Is the Mirai (or another similar H2 vehicle) a “Tesla Killer”? Not a chance!
Originally published on EVannex
Elon Musk
Starlink terminals smuggled into Iran amid protest crackdown: report
Roughly 6,000 units were delivered following January’s unrest.
The United States quietly moved thousands of Starlink terminals into Iran after authorities imposed internet shutdowns as part of its crackdown on protests, as per information shared by U.S. officials to The Wall Street Journal.
Roughly 6,000 units were delivered following January’s unrest, marking the first known instance of Washington directly supplying the satellite systems inside the country.
Iran’s government significantly restricted online access as demonstrations spread across the country earlier this year. In response, the U.S. purchased nearly 7,000 Starlink terminals in recent months, with most acquisitions occurring in January. Officials stated that funding was reallocated from other internet access initiatives to support the satellite deployment.
President Donald Trump was aware of the effort, though it remains unclear whether he personally authorized it. The White House has not issued a comment about the matter publicly.
Possession of a Starlink terminal is illegal under Iranian law and can result in significant prison time. Despite this, the WSJ estimated that tens of thousands of residents still rely on the satellite service to bypass state controls. Authorities have reportedly conducted inspections of private homes and rooftops to locate unauthorized equipment.
Earlier this year, Trump and Elon Musk discussed maintaining Starlink access for Iranians during the unrest. Tehran has repeatedly accused Washington of encouraging dissent, though U.S. officials have mostly denied the allegations.
The decision to prioritize Starlink sparked internal debate within U.S. agencies. Some officials argued that shifting resources away from Virtual Private Networks (VPNs) could weaken broader internet access efforts. VPNs had previously played a major role in keeping Iranians connected during earlier protest waves, though VPNs are not effective when the actual internet gets cut.
According to State Department figures, about 30 million Iranians used U.S.-funded VPN services during demonstrations in 2022. During a near-total blackout in June 2025, roughly one-fifth of users were still able to access limited connectivity through VPN tools.
Critics have argued that satellite access without VPN protection may expose users to geolocation risks. After funds were redirected to acquire Starlink equipment, support reportedly lapsed for two of five VPN providers operating in Iran.
A State Department official has stated that the U.S. continues to back multiple technologies, including VPNs alongside Starlink, to sustain people’s internet access amidst the government’s shutdowns.
News
Tesla ramps up Sweden price war with cheaper Model Y offer
The incentive effectively acts as a manufacturer-funded EV bonus and makes the entry-level Model Y more affordable.
Tesla has introduced a new 40,000 SEK incentive in Sweden, lowering the price of its most affordable Model Y to a record low. The incentive effectively acts as a manufacturer-funded EV bonus and makes the entry-level Model Y more affordable.
As per a report from Swedish auto outlet Allt om Elbil, Tesla Sweden is offering a 40,000 SEK electric car bonus on the entry-level Tesla Model Y Rear-Wheel Drive variant. The incentive lowers the purchase price of the base all-electric crossover to 459,900–459,990 SEK, depending on listing.
The bonus applies to orders and deliveries completed by March 31, 2026. Tesla Sweden is also offering zero-interest financing as part of the campaign.
Last fall, Tesla launched a new base version of the Model Y starting at 499,990 SEK. The variant features a refreshed design and simplified equipment compared to the Premium and Performance variants. The new 40,000 SEK incentive now pushes the entry model well below the 460,000 SEK mark.
So far this year, the Model Y remains the most registered electric vehicle in Sweden and the third most registered new car overall. However, most registrations have been for higher Premium-spec versions. The new incentive could then be Tesla’s way to push sales of its most affordable Model Y variant in the country.
Tesla is also promoting private leasing options for the entry-level Model Y at 4,995 SEK per month. Swedish automotive observers have noted that leasing may remain the more cost-effective option compared to purchasing outright, even after the new discount.
The base Model Y Rear-Wheel Drive offers a WLTP range of 534 kilometers, a top speed of 201 km/h, and a 0–100 km/h time of 7.2 seconds. Tesla lists energy consumption at 13.1 kWh per 100 kilometers, making it the most efficient version of the vehicle in the lineup and potentially lowering overall ownership costs.
News
Tesla China hires Autopilot Test Engineer amid continued FSD rollout preparations
The role is based in Lingang, the district that houses Gigafactory Shanghai.
Tesla is hiring an Autopilot Test Engineer in Shanghai, a move that signals continued groundwork for the validation of Full Self-Driving (FSD) in China. The role is based in Lingang, the district that houses Gigafactory Shanghai and has become a key testing zone for advanced autonomous features.
As observed by Tesla watchers, local authorities in Shanghai’s Nanhui New City within Lingang have previously authorized a fleet of Teslas to run advanced driving tests on public roads. This marked one of the first instances where foreign automakers were permitted to test autonomous driving systems under real traffic conditions in China.
Tesla’s hiring efforts come amid ongoing groundwork for a full FSD rollout in China. Earlier reporting noted that Tesla China has been actively preparing the regulatory and infrastructure foundation needed for full FSD deployment, even though the company has not yet announced a firm launch date for the feature in the market.
As per recent comments from Tesla China Vice President Grace Tao, the electric vehicle maker has been busy setting up the necessary facilities to support FSD’s full rollout in the country. In a comment to local media, Tao stated that FSD should demonstrate a level of performance that could surpass human drivers once it is fully rolled out.
“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”
Tesla CEO Elon Musk has been quite bullish about a potential FSD rollout in China. During the 2025 Annual Shareholder Meeting, Musk emphasized that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026. This timeline was reiterated by the CEO during his appearance at the World Economic Forum in Davos.
