News
SpaceX to launch asteroid mining spacecraft alongside private Moon lander
SpaceX customer Intuitive Machines says it will use spare capacity on one of its Moon lander launches to send startup AstroForge’s first asteroid prospector spacecraft into deep space.
Intuitive Machines’ second Nova-C Moon lander is scheduled to launch no earlier than (NET) Q4 2023 on a SpaceX Falcon 9 rocket. The IM-2 lander is the primary payload but is only expected to weigh about 1.9 tons (~4300 lb). To take advantage of the rocket performance left on the table by the relatively light payload, Intuitive Machines has opted to include a secondary payload adapter ring (ESPA) located below each lander. That gives companies like AstroForge an opportunity to hitch a ride to high Earth orbit, deep space, and the Moon for a likely unbeatable price.
Built by UK startup Orbital Astronautics, AstroForge’s Brokkr-2 spacecraft will attempt to become the first private vehicle to prospect for resources on an asteroid. It’s also the third rideshare payload announced for Intuitive Machines’ IM-2 mission.
We’re excited to launch these missions and many more to come. More information on this year’s launches: https://t.co/MSR61V8Lh7— AstroForge (@ForgeAstro) January 24, 2023
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Lunar Trailblazer
Coincidentally, the main purpose of the second IM-2 rideshare payload to be announced is to search for resources in space. It isn’t concerned with asteroids, but NASA’s 200-kilogram (440 lb) Lunar Trailblazer spacecraft is designed to find, characterize, and map water ice resources on the Moon. That map could help future missions explore the possibility of turning lunar ice into commodities like breathable oxygen or rocket propellant.
The challenges facing such a concept are extreme, but a rocket propellant depot located on the lunar surface could significantly increase the performance of future Moon landers. Propellant depots in cislunar orbit could also help boost spacecraft further and faster to destinations elsewhere in the solar system.

Tanker-002
The first IM-2 rideshare payload to be announced was OrbitFab’s Tanker-002 spacecraft. It’s unclear if OrbitFab is on track to fly Tanker-002 in late 2023, but the spacecraft is meant to be the first geostationary propellant depot ever launched. The Colorado startup has already won a $13.3 million contract from the US military to refuel satellites in geostationary orbit, 36,000 kilometers (~22,250 mi) above Earth’s surface. It’s possible that Tanker-002 is meant to support that refueling mission.
The spacecraft is designed to carry a few hundred pounds of hydrazine monopropellant, potentially enabling it to extend the useful lives of multiple multimillion-dollar satellites by several years. Alongside IM-2, Falcon 9 will launch Tanker-002 on a lunar flyby trajectory. But thanks to the cooperation of startup GeoJump, instead of entering orbit around the Moon, Tanker-002 will slingshot around the Moon to slow itself down. That lunar slingshot will allow the depot to efficiently enter geostationary orbit, where it can begin refueling spacecraft.

Brokkr-2
Brokkr-2 is the second of two AstroForge spacecraft scheduled to launch in 2023. The first, Brokkr-1, will head to low Earth orbit (LEO) as early as April 2023 on SpaceX’s seventh Falcon 9 rideshare launch. Once in orbit, it will attempt to demonstrate technology AstroForge has developed to refine platinum ore in microgravity conditions. Brokkr-2 will then visit an asteroid and search for platinum resources. If enough platinum is discovered, Bloomberg reports that AstroForge will send a third mission to demonstrate the ability to land on the asteroid. As early as 2025, AstroForge’s fourth mission would be the first to attempt to land, gather ore, turn that ore into platinum, and return the precious metal to Earth.
AstroForge has raised $13 million to date. Unlike failed asteroid mining startups Deep Space Industries and Planetary Resources, the new company intends to exploit increasingly capable off-the-shelf hardware and services to keep its costs as low as possible. In theory, that will allow it to focus most of its resources on developing the unproven technology required to gather and refine space-based resources.

IM-2
Finally, the IM-2 Nova-C Moon lander’s primary payload is a pair of NASA instruments designed to drill into the lunar surface and analyze the regolith for volatiles. Also known as PRIME-1, the mission will be NASA’s first serious exploration of in-situ resource utilization (ISRU) on the Moon.
The mission is a sort of microcosm of the future of space utilization, which may focus heavily on ISRU and refueling to extend the capabilities of chemically-powered rockets and spacecraft. Lunar Trailblazer will map lunar water resources. Brokkr-2 will attempt to prospect an asteroid for extractable metal. IM-2 will test technologies that could help extract resources from the Moon. And Tanker-002 will be a significant step forward for commercial propellant depots, which could eventually create markets for space resources.
News
Tesla shares AI5 chip’s ambitious production roadmap details
Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design.”
Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design” that could outperform its predecessor by a notable margin. Speaking during Tesla’s Q3 2025 earnings call, Musk outlined how the chip will be manufactured in partnership with both Samsung and TSMC, with production based entirely in the United States.
What makes AI5 special
According to Musk, the AI5 represents a complete evolution of Tesla’s in-house AI hardware, building on lessons learned from the AI4 system currently used in its vehicles and data centers. “By some metrics, the AI5 chip will be 40x better than the AI4 chip, not 40%, 40x,” Musk said during the Q3 2025 earnings call. He credited Tesla’s unique vertical integration for the breakthrough, noting that the company designs both the software and hardware stack for its self-driving systems.
To streamline the new chip, Tesla eliminated several traditional components, including the legacy GPU and image signal processor, since the AI5 architecture already incorporates those capabilities. Musk explained that these deletions allow the chip to fit within a half-reticle design, improving efficiency and power management.
“This is a beautiful chip,” Musk said. “I’ve poured so much life energy into this chip personally, and I’m confident this is going to be a winner.”
Tesla’s dual manufacturing strategy for AI5
Musk confirmed that both Samsung’s Texas facility and TSMC’s Arizona plant will fabricate AI5 chips, with each partner contributing to early production. “It makes sense to have both Samsung and TSMC focus on AI5,” the CEO said, adding that while Samsung has slightly more advanced equipment, both fabs will support Tesla’s U.S.-based production goals.
Tesla’s explicit objective, according to Musk, is to create an oversupply of AI5 chips. The surplus units could be used in Tesla’s vehicles, humanoid robots, or data centers, which already use a mix of AI4 and NVIDIA hardware for training. “We’re not about to replace NVIDIA,” Musk clarified. “But if we have too many AI5 chips, we can always put them in the data center.”
Musk emphasized that Tesla’s focus on designing for a single customer gives it a massive advantage in simplicity and optimization. “NVIDIA… (has to) satisfy a large range of requirements from many customers. Tesla only has to satisfy one customer, Tesla,” he said. This, Musk stressed, allows Tesla to delete unnecessary complexity and deliver what could be the best performance per watt and per dollar in the industry once AI5 production scales.
Energy
Tesla VP hints at Solar Roof comeback with Giga New York push
The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.
Tesla’s long-awaited and way underrated Solar Roof may finally be getting its moment. During the company’s Q3 2025 earnings call, Vice President of Energy Engineering Michael Snyder revealed that production of a new residential solar panel has started at Tesla’s Buffalo, New York facility, with shipments to customers beginning in the first quarter of 2026.
The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.
Tesla Energy’s strong demand
Responding to an investor question about Tesla’s energy backlog, Snyder said demand for Megapack and Powerwall continues to be “really strong” into next year. He also noted positive customer feedback for the company’s new Megablock product, which is expected to start shipping from Houston in 2026.
“We’re seeing remarkable growth in the demand for AI and data center applications as hyperscalers and utilities have seen the versatility of the Megapack product. It increases reliability and relieves grid constraints,” he said.
Snyder also highlighted a “surge in residential solar demand in the US,” attributing the spike to recent policy changes that incentivize home installations. Tesla expects this trend to continue into 2026, helped by the rollout of a new solar lease product that makes adoption more affordable for homeowners.
Possible Solar Roof revival?
Perhaps the most intriguing part of Snyder’s remarks, however, was Tesla’s move to begin production of its “residential solar panel” in Buffalo, New York. He described the new panels as having “industry-leading aesthetics” and shape performance, language Tesla has used to market its Solar Roof tiles in the past.
“We also began production of our Tesla residential solar panel in our Buffalo factory, and we will be shipping that to customers starting Q1. The panel has industry-leading aesthetics and shape performance and demonstrates our continued commitment to US manufacturing,” Snyder said during the Q3 2025 earnings call.
Snyder did not explicitly name the product, though his reference to aesthetics has fueled speculation that Tesla may finally be preparing a large-scale and serious rollout of its Solar Roof line.
Originally unveiled in 2016, the Solar Roof was intended to transform rooftops into clean energy generators without compromising on design. However, despite early enthusiasm, production and installation volumes have remained limited for years. In 2023, a report from Wood Mackenzie claimed that there were only 3,000 operational Solar Roof installations across the United States at the time, far below forecasts. In response, the official Tesla Energy account on X stated that the report was “incorrect by a large margin.”
News
Tesla VP explains why end-to-end AI is the future of self-driving
Using examples from real-world driving, he said Tesla’s AI can learn subtle value judgments, the VP noted.
Tesla’s VP of AI/Autopilot software, Ashok Elluswamy, has offered a rare inside look at how the company’s AI system learns to drive. After speaking at the International Conference on Computer Vision, Elluswamy shared details of Tesla’s “end-to-end” neural network in a post on social media platform X.
How Tesla’s end-to-end system differs from competitors
As per Elluswamy’s post, most other autonomous driving companies rely on modular, sensor-heavy systems that separate perception, planning, and control. In contrast, Tesla’s approach, the VP stated, links all of these together into one continuously trained neural network. “The gradients flow all the way from controls to sensor inputs, thus optimizing the entire network holistically,” he explained.
He noted that the benefit of this architecture is scalability and alignment with human-like reasoning. Using examples from real-world driving, he said Tesla’s AI can learn subtle value judgments, such as deciding whether to drive around a puddle or briefly enter an empty oncoming lane. “Self-driving cars are constantly subject to mini-trolley problems,” Elluswamy wrote. “By training on human data, the robots learn values that are aligned with what humans value.”
This system, Elluswamy stressed, allows the AI to interpret nuanced intent, such as whether animals on the road intend to cross or stay put. These nuances are quite difficult to code manually.
Tackling scale, interpretability, and simulation
Elluswamy acknowledged that the challenges are immense. Tesla’s AI processes billions of “input tokens” from multiple cameras, navigation maps, and kinematic data. To handle that scale, the company’s global fleet provides what he called a “Niagara Falls of data,” generating the equivalent of 500 years of driving every day. Sophisticated data pipelines then curate the most valuable training samples.
Tesla built tools to make its network interpretable and testable. The company’s Generative Gaussian Splatting method can reconstruct 3D scenes in milliseconds and model dynamic objects without complex setup. Apart from this, Tesla’s neural world simulator allows engineers to safely test new driving models in realistic virtual environments, generating high-resolution, causal responses in real time.
Elluswamy concluded that this same architecture will eventually extend to Optimus, Tesla’s humanoid robot. “The work done here will tremendously benefit all of humanity,” he said, calling Tesla “the best place to work on AI on the planet currently.”
-
Elon Musk1 week agoSpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
-
Elon Musk6 days agoTesla Full Self-Driving gets an offer to be insured for ‘almost free’
-
News6 days agoElon Musk confirms Tesla FSD V14.2 will see widespread rollout
-
News7 days agoTesla is adding an interesting feature to its centerscreen in a coming update
-
News1 week agoTesla launches new interior option for Model Y
-
News1 week agoTesla widens rollout of new Full Self-Driving suite to more owners
-
Elon Musk7 days agoTesla CEO Elon Musk’s $1 trillion pay package hits first adversity from proxy firm
-
News5 days agoTesla might be doing away with a long-included feature with its vehicles

