Connect with us

News

SpaceX attempts second Falcon fairing drop test with a helicopter and Mr. Steven

(Pauline Acalin)

Published

on

Following a few days of rest in port, SpaceX fairing recovery vessel Mr. Steven has continued a likely campaign of controlled drop tests with a second fairing recovery attempt, using a helicopter, spotter plane, and support vessel to pick up a Falcon fairing and drop it, theoretically allowing it to paraglide into Mr. Steven’s net.

While it’s nearly impossible to determine what happened without line-of-sight visual confirmation or an official announcement from SpaceX, it appears that Mr. Steven kicked off real catch attempts on October 11th, evidenced by his close interaction with a Blackhawk helicopter over the course of an hour or so. Another similar attempt occurred today, October 17th, and culminated with Mr. Steven returning once more to Port of San Pedro with the same test-focused fairing half on board, albeit not resting in his retracted net.

After October 11th’s testing was completed, Mr. Steven returned to Port of San Pedro. On October 13th, he was docked at SpaceX’s Berth 240 facilities with net lowered and the test fairing half wrapped up on the docks, preventing confirmation of whether he carried the fairing half back from the testing region. A mid-sized barge also recently appeared at Berth 240 with a distinct Falcon fairing cradle onboard, perhaps explaining the presence of a tugboat (named Sir Richard) a few miles away from where this test campaign has been stationed – a barge would offer a flat, safe surface for a helicopter to hover over and pick up an unwieldy object such as a payload fairing.

Nearly identical to the October 11th test, Mr. Steven, tug Sir Richard, a Cessna chase plane, and a Blackhawk helicopter all converged around 100 miles southwest of Port of Los Angeles around 2pm PDT on October 17th prior to beginning recovery test operations. Mr. Steven and the tug Sir Richard – likely towing a barge being temporarily used to move a fairing half – arrived several hours beforehand at the test’s planned location.

 

Advertisement

Eventually, a UH-60A Blackhawk helicopter – the same helicopter used on October 11 – lifted off from Catalina Island’s Avalon airport, taking about half an hour to reach Mr. Steven and Sir Richard. Once there, the helicopter very distinctly slowed down, eventually hovering just ~20 feet off the surface of the ocean, if not outright landing or perching on the aforementioned barge under the tug’s control. After several minutes in that state, the Blackhawk lifted off and immediately began climbing, reaching a peak of ~11,000 ft before (presumably) dropping its fairing payload and immediately diving down to follow its descent.

It’s undoubtedly an imperfect fit, but the helicopter appeared to follow Mr. Steven very closely over the course of the recovery attempt, sticking just a ~1500 ft or less above and a few hundred feet beside him as he raced to catch the falling fairing half. In fact, at least as a very rough approximation, the helicopter’s descent may be useful to judge the fairing’s behavior while gliding: taking ~14 minutes to travel descend 11,000ft and travel perhaps 2 miles (~10,500ft) horizontally, the fairing would dropped at a reasonable 13.1 feet per second (~4 m/s) once its parafoil opened and seemed to travel approximately one foot forward for every one foot down, also known as a 1:1 glide slope ratio.

Depending on wind conditions, parafoils can nominally be expected to achieve average glide slope ratios between 0 (high winds; falling like a literal rock) and 4 (no winds; almost as good as a bad airplane), meaning that Falcon fairings – judging from tangential data gathered from the helicopter following its descent – fly much like a parafoil, which is to say not great but better than a brick. The trick with parafoil control – which includes tweaking angles of attack and glide slope – lies more in the art of trading forward velocity for vertical velocity (or vice versa) at key moments. Assuming their control mechanisms have enough authority, paragliding fairings could ‘flare’ as they near Mr. Steven’s net, essentially angling upwards to briefly hover before dropping quickly, maybe giving the boat enough time to swoop in and place its net just beneath it.

Advertisement

In this way, a parafoil’s flexible, inflated wing (airfoil, to be precise) can allow it to maneuver quite a lot like a bird, at least more so than most other methods of flying humans have access to. Time will tell if SpaceX is having any luck perfecting the guidance and recovery of Falcon fairings, particularly with this campaign of under-the-radar drop tests. Even if Mr. Steven returns with a fairing half resting in his net, it will be more than a little ambiguous if it was placed there or he caught it, and any certainty will rely on official confirmation from SpaceX itself.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla sends clear message to Waymo with latest Austin Robotaxi move

It is the first expansion Tesla has made in Austin since the one on August 26. The company still operates in the Bay Area of California as well, referring to that program specifically as a “ride-hailing service.”

Published

on

Credit: Tesla

Tesla has sent a clear message to Waymo with its latest move to its Robotaxi program in Austin, Texas.

Tesla and Waymo are the two true leaders in autonomous ride-hailing to an extent. Tesla has what many believe is a lot of potential due to its prowess with the Supervised Full Self-Driving suite. It is also operating a driverless Robotaxi service in Austin with a “Safety Monitor” that sits in the passenger’s seat.

Tesla explains why Robotaxis now have safety monitors in the driver’s seat

The two companies have been competing heavily in the market since they both launched driverless ride-hailing services in Austin this year: Waymo’s in March and Tesla’s in June.

One of the main drivers in the competition between the two is service area size, or the geofence in which the cars will operate without a driver. In August, the two were tied with a service area of about 90 square miles (233.099 sq. km).

Advertisement

Tesla then expanded to about 170 square miles (440.298 sq. km) on August 26, dwarfing Waymo’s service area and expanding to freeways. Tesla’s freeway operation of the Robotaxi suite requires the Safety Monitor to be in the driver’s seat for safety reasons.

On Tuesday evening, Tesla made another move that sent a clear message to Waymo, as it expanded once again, this time to 243 square miles (629.367 sq. km).

This is according to Robotracker:

It is the first expansion Tesla has made in Austin since the one on August 26. The company still operates in the Bay Area of California as well, referring to that program specifically as a “ride-hailing service.”

Yesterday, it expanded that service to the San Jose Mineta International Airport, something it has been working on for several months.

Waymo has its own set of distinct advantages over Tesla as well, as it operates in more cities and states than the EV maker. Waymo currently has its autonomous vehicle services in Phoenix, Arizona, San Francisco, Los Angeles, Austin, and Atlanta, Georgia.

Tesla plans to have half of the U.S. population with access to the Robotaxi platform by the end of the year.

Advertisement
Continue Reading

News

Tesla exec reveals shock development with Cybercab

“If we have to have a steering wheel, it can have a steering wheel and pedals.”

Published

on

(Credit: Teslarati)

Tesla is planning to launch the Cybercab in the second quarter of next year, and it is designed to be fully autonomous, so much so that the company is planning to build it without a steering wheel or pedals.

However, a Tesla executive said today that the company could ditch that idea altogether in what would be a major shift from the plans the company, and especially its CEO Elon Musk, have announced for the Cybercab.

Earlier today, Robyn Denholm, the company’s Chair for the Board of Directors, revealed that Tesla would potentially switch up its plans for the Cybercab based on potential regulatory requirements.

Credit: Tesla Europe & Middle East | X

Currently, even autonomous vehicles that operate for companies like Tesla and Waymo are required to have steering wheels and pedals. From a regulatory perspective, this could halt the plans Tesla has for Cybercab.

Denholm said in an interview with Bloomberg:

“If we have to have a steering wheel, it can have a steering wheel and pedals.”

Advertisement

Interestingly, Musk and Tesla have not veered away from the idea that the vehicle will be without these operational must-haves.

Since the vehicle was revealed last October at the We, Robot event in Los Angeles, Tesla has maintained that the car would be built without a steering wheel or pedals, and would equip two seats, which is what is statistically most popular in ride-sharing, as the vast majority of rides have only one or two passengers.

Musk doubled down on the plans for Cybercab as recently as last week, when he said:

“That’s really a vehicle that’s optimized for full autonomy. It, in fact, does not have a steering wheel or pedals and is really an enduring optimization on minimizing cost per mile for fully considered cost per mile of operation. For our other vehicles, they still have a little bit of the horse carriage thing going on where, obviously, if you’ve got steering wheels and pedals and you’re designing a car that people might want to go very direct past acceleration and tight cornering, like high-performance cars, then you’re going to design a different car than one that is optimized for a comfortable ride and doesn’t expect to go past sort of 85 or 90 miles an hour.”

Cybercab is fully conceptualized as a vehicle that has zero need for pedals or a steering wheel because it is aimed toward being fully reliant on a Level 5 autonomous platform.

Advertisement

Tesla is ramping its hiring for Cybercab vehicle manufacturing roles

Regulators could get in the way of this, however, and although the car could drive itself and be a great solution for ride-hailing, it might need to have these controls to hit the road in the future.

Continue Reading

News

SpaceX opens up free Starlink service for those impacted by Hurricane Melissa

Published

on

(Credit: Starlink | X)

SpaceX is opening up its internet service, Starlink, to those impacted by Hurricane Melissa, as it made landfall in Jamaica and the Bahamas as a Category 5 storm.

Hurricane Melissa is expected to reach wind speeds of over 165 MPH over the next few days as it extends out into the Atlantic Ocean by Thursday and Friday.

Citizens in Jamaica and the Bahamas have been preparing for the storm for the past week, getting necessary goods together and preparing for the massive storm to arrive. It finally did yesterday, and the first images and video of the storm are showing that it could destroy many parts of both countries.

Advertisement

Starlink is now being opened up for free until the end of November for those impacted by the storm in Jamaica and the Bahamas, SpaceX announced today:

It is a move similar to the one the company made last year as Hurricane Helene made its way through the United States, destroying homes and property across the East Coast. SpaceX offered free service for those impacted by the destruction caused by the storm.

The free Starlink service was available until the end of 2024.

Advertisement

Elon Musk’s companies have also made similar moves to help out those who are impacted by natural disasters. Tesla has offered Free Supercharging in the past, most notably during the California wildfires.

Tesla and SpaceX’s LA fire relief efforts: Cybertrucks, free Starlink and more

One major advantage of Starlink is that it is available for use in situations like this one, where power might be required to operate things like a modem and router.

Internet access is a crucial part of survival in these situations, especially as it can be the last leg some stand on to get in touch with emergency services or loved ones.

Advertisement
Continue Reading

Trending