Connect with us

Energy

Google’s neural network takes a step closer to predicting disease using DNA

A protein folding prediction generated by Google DeepMind's AlphaFold AI. | Credit: DeepMind Technologies Limited

Published

on

If humans had the ability to predict protein structure solely from DNA information, it would be a medical superpower against disease, and artificial intelligence is our best hope thus far to obtain it. Such a feat is now one step closer with the creation of “AlphaFold”, a neural network designed by Google’s AI company DeepMind, to do that very thing. After entering a biannual protein folding prediction contest called the Critical Assessment of Structure Prediction (CASP), AlphaFold was declared winner out of 98 AI competitors, specifically by most accurately predicting 25 of 43 protein shapes given using genetic sequences alone. The second place winner predicted only three.

In a nutshell (or smaller, really), proteins are key factors in every living thing’s physiological processes. Their structures are encoded in DNA, and they are responsible for contracting muscles, metabolizing food into energy, fighting disease, and transmitting signals, among a great many other things. The function of proteins depends on their unique 3D structure. The way they are shaped is directly related to what they do in the body. For example, antibodies have “hooks” that attach and tag viruses and bacteria, and ligament proteins are cord-shaped, enabling them to transmit tension.

The being said, the ability to predict protein shapes can enable scientists to learn more about how defects specifically affect the body, repair damaged ones with targeted therapies, and design new ones. Their specific structure is key – the 3D shape determines a protein’s function. To further illustrate this importance, misfolding proteins are linked to many health issues such as type 2 diabetes and Parkinson’s disease.

AlphaFold’s predicted folding vs. actual folding. | Credit: DeepMind Technologies Limited

Some medical progress has been made to address protein folding issues such as drug therapies that bind to proteins and alter their function; however, the human body is able to generate around 2 million different types of proteins, and so far we can only identify about 100,000 of them. Out of those proteins, the variety of folded 3D structures possible is calculated to be a googol cubed – 10 to the power of 300. Clearly, this is not really a job for a human. As further described on DeepMind’s website, “[According to] Levinthal’s paradox, it would take longer than the age of the universe to enumerate all the possible configurations of a typical protein before reaching the right 3D structure.”

DeepMind is no stranger to achieving incredible things with its AI software. A program built by the company called “agent” learned to play 49 different retro computer games in 2015, making it the first computer program capable of independently learning a large variety of tasks. Two other programs named “AlphaZero” and “AlphaGo” were able to beat the world’s best human and computer players at chess and the ancient Chinese game “Go”, respectively. AlphaGo was later revised as “AlphaGo Zero” to play the same Go game without any prior human knowledge, i.e., it taught itself to play and subsequently win.

AlphaFold was trained with thousands of known proteins until it could accurately predict those proteins’ 3D shape. This was a significant improvement over other existing technology, not only in levels of accuracy, but in cost-effectiveness. Other protein identification techniques such as cryo-electron microscopy and nuclear magnetic resonance depend on a lot of trial and error, which involves years of work and several thousands of dollars per protein structure to achieve. Considering the complexity involved in this field, the AlphaFold’s achievement in the CASP contest is, to say the least, representative of the expanding possibilities for scientific research and discovery using artificial intelligence.

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Energy

Tesla recalls Powerwall 2 units in Australia

Published

on

(Credit: nathanwoodgc /Instagram)

Tesla will recall Powerwall 2 units in Australia after a handful of property owners reported fires that caused “minor property damage.” The fires were attributed to cells used by Tesla in the Powerwall 2.

Tesla Powerwall is a battery storage unit that retains energy from solar panels and is used by homeowners and businesses to maintain power in the event of an outage. It also helps alleviate the need to rely on the grid, which can help stabilize power locally.

Powerwall owners can also enroll in the Virtual Power Plant (VPP) program, which allows them to sell energy back to the grid, helping to reduce energy bills. Tesla revealed last year that over 100,000 Powerwalls were participating in the program.

Tesla announces 100k Powerwalls are participating in Virtual Power Plants

The Australia Competition and Consumer Commission said in a filing that it received several reports from owners of fires that led to minor damage. The Australian government agency did not disclose the number of units impacted by the recall.

Advertisement

The issue is related to the cells, which Tesla sources from a third-party company.

Anyone whose Powerwall 2 unit is impacted by the recall will be notified through the Tesla app, the company said.

Continue Reading

Energy

Tesla’s new Megablock system can power 400,000 homes in under a month

Tesla also unveiled the Megapack 3, the latest iteration of its flagship utility scale battery.

Published

on

Credit: Tesla

Tesla has unveiled the Megablock and Megapack 3, the latest additions to its industrial-scale battery storage solution lineup. 

The products highlight Tesla Energy’s growing role in the company, as well as the division’s growing efforts to provide sustainable energy solutions for industrial-scale applications.

Megablock targets speed and scale

During the “Las Megas” event in Las Vegas, Tesla launched Megablock, a pre-engineered medium-voltage block designed to integrate Megapack 3 units in a plug-and-play system. Capable of 20 MWh AC with a 25-year life cycle and more than 10,000 cycles, the Megablock could achieve 91% round-trip efficiency at medium voltage, inclusive of auxiliary loads.

Tesla emphasized that Megablock can be installed 23% faster with up to 40% lower construction costs. The platform eliminates above-ground cabling through a new flexible busbar assembly and delivers site-level density of 248 MWh per acre. With Megablock, Tesla is also aiming to commission 1 GWh in just 20 business days, or enough to power 400,000 homes in less than a month. 

“With Megablock, we are targeting to commission 1 GWh in 20 business days, which is the equivalent of bringing power to 400,000 homes in less than a month. It’s crazy. How are we planning to do that? Like most things at Tesla, we are ruthlessly attacking every opportunity to save our customers time, simplify the process, remove steps, (and) automate as much as we can,” the company said. 

Advertisement

Megapack 3 is all about simplicity

The Megapack 3 is Tesla’s next-generation utility battery, designed with a simplified architecture that cuts 78% of connections compared to the previous version. Its thermal bay is drastically simplified, and it uses a Model Y heat pump on steroids. The battery weighs about 86,000 pounds and holds 5 MWh of usable AC energy. Tesla engineers incorporated a larger battery module and a new 2.8-liter LFP cell co-developed with the company’s cell team.

The Megapack 3 is designed for serviceability, and it features easier front access and no roof penetrations. About 75% of Megapack 3’s total mass is battery cells, with individual modules weighing as much as a Cybertruck. It’s also tough, with an ambient operating temperature range from -40C to 60C. This should allow the Megapack 3 to operate optimally from the coldest to the hottest regions on the planet.

Production is set to begin at Tesla’s Houston Megafactory in late 2026, with planned capacity of 50 GWh per year. Additional supply will come from Tesla’s 7 GWh LFP facility in Nevada, which is expected to open in 2025, as well as with third-party partners.

Continue Reading

Energy

Tesla Energy is the world’s top global battery storage system provider again

Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Published

on

Credit: Tesla

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.

Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.

Tesla Energy dominates in North America, but its lead is narrowing globally

Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report. 

On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.

Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Advertisement

Chinese integrators surge in Europe, falter in U.S.

China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.

Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.

“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.

Continue Reading

Trending