Connect with us

News

NASA’s Artemis Moon mission hits important milestone with successful full-scale booster test

NASA successfully tests a full-scale version of its Artemis Moon mission booster. (Image: NASA/Northrop Grumman)

Published

on

NASA’s upcoming Artemis mission to the Moon hit an important milestone today by successfully ground testing a full-scale version of its newest rocket booster.

Building on the completion of other similar tests of the booster – named Flight Support Booster 1 (FSB-1) – which qualified it for flight as part of the agency’s upcoming Space Launch System (SLS), this most recent test used new propellant materials and verified that the ballistic requirements of its five motors were met. In a follow up teleconference, NASA and its partners confirmed the test accomplished its goals.

https://twitter.com/JimBridenstine/status/1301260812342890496

“NASA and Northrop Grumman have completed testing for the boosters used for the first three Artemis missions of the agency’s lunar program,” the digital press kit detailed. “FSB-1 builds upon prior tests of the rocket’s five-segment solid rocket booster to evaluate improvements and new materials in the boosters for missions beyond Artemis III.”

FSB-1 and its variants are primarily built by NASA partner Northrop Grumman whose facility in Promontory, Utah is where today’s test took place. The recent test firing burned for about two minutes and produced 3.6 million pounds of thrust. Its success is a nod to NASA’s claim that these are the largest, most powerful rocket boosters ever built for flight. Measuring 167 feet long and 12 feet in diameter, FSB-1-type boosters will fly in pairs along with the main SLS rocket body and cargo.

Advertisement
-->
NASA successfully tests a full-scale version of its Artemis Moon mission booster. (Image: NASA/Northrop Grumman)

NASA’s Artemis mission is dubbed as the “twin sister of Apollo” and is aiming to return humans to the Moon by 2024. The agency has set out to develop a whole suite of technologies to support both a sustainable lunar-oriented mission and a subsequent Mars mission, engaging the commercial space community along the way. While the launch components of Artemis involve the traditional NASA path of using long-time contractors, other parts of the mission have been opened to other bidders whose contract winners have included SpaceX.

As an add-on to its success in launching the first astronauts to the ISS from American soil since the Space Shuttle’s retirement in 2011, SpaceX has also made headway in NASA’s competitive Moon race. The private space company has already procured four contracts to develop and lunar launch and landing capabilities for the agency, one as recently as the end of August. SpaceX also has multiple Moon-oriented launch contracts independent of NASA.

NASA’s SLS rocket seen in its Block 1 configuration with on Orion capsule on top. (NASA)

One of the SLS’s primary competitors will be SpaceX’s Falcon Heavy and Starship rockets. The company has already begun testing prototypes of its rocket-lander combination along with setting world records with its new Raptor engine. While SpaceX’s primary mission is to ferry humans to Mars for lifelong stays, the Moon is already providing paying customers for the venture.

Last year, CEO Elon Musk announced a private charter agreement between eccentric Japanese billionaire Yusaku Maezawa and the rocket maker for a lunar trip in 2023. SpaceX’s earliest NASA-backed trip to the Moon is set for 2022 while the agency’s own Artemis mission has 2024 on its calendar for launch.

You can watch NASA’s full Artemis mission booster test below:

Advertisement
-->

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading