News
NASA’s Artemis Moon mission hits important milestone with successful full-scale booster test
NASA’s upcoming Artemis mission to the Moon hit an important milestone today by successfully ground testing a full-scale version of its newest rocket booster.
Building on the completion of other similar tests of the booster – named Flight Support Booster 1 (FSB-1) – which qualified it for flight as part of the agency’s upcoming Space Launch System (SLS), this most recent test used new propellant materials and verified that the ballistic requirements of its five motors were met. In a follow up teleconference, NASA and its partners confirmed the test accomplished its goals.
https://twitter.com/JimBridenstine/status/1301260812342890496
“NASA and Northrop Grumman have completed testing for the boosters used for the first three Artemis missions of the agency’s lunar program,” the digital press kit detailed. “FSB-1 builds upon prior tests of the rocket’s five-segment solid rocket booster to evaluate improvements and new materials in the boosters for missions beyond Artemis III.”
FSB-1 and its variants are primarily built by NASA partner Northrop Grumman whose facility in Promontory, Utah is where today’s test took place. The recent test firing burned for about two minutes and produced 3.6 million pounds of thrust. Its success is a nod to NASA’s claim that these are the largest, most powerful rocket boosters ever built for flight. Measuring 167 feet long and 12 feet in diameter, FSB-1-type boosters will fly in pairs along with the main SLS rocket body and cargo.

NASA’s Artemis mission is dubbed as the “twin sister of Apollo” and is aiming to return humans to the Moon by 2024. The agency has set out to develop a whole suite of technologies to support both a sustainable lunar-oriented mission and a subsequent Mars mission, engaging the commercial space community along the way. While the launch components of Artemis involve the traditional NASA path of using long-time contractors, other parts of the mission have been opened to other bidders whose contract winners have included SpaceX.
As an add-on to its success in launching the first astronauts to the ISS from American soil since the Space Shuttle’s retirement in 2011, SpaceX has also made headway in NASA’s competitive Moon race. The private space company has already procured four contracts to develop and lunar launch and landing capabilities for the agency, one as recently as the end of August. SpaceX also has multiple Moon-oriented launch contracts independent of NASA.
NASA’s SLS rocket seen in its Block 1 configuration with on Orion capsule on top. (NASA)
One of the SLS’s primary competitors will be SpaceX’s Falcon Heavy and Starship rockets. The company has already begun testing prototypes of its rocket-lander combination along with setting world records with its new Raptor engine. While SpaceX’s primary mission is to ferry humans to Mars for lifelong stays, the Moon is already providing paying customers for the venture.
Last year, CEO Elon Musk announced a private charter agreement between eccentric Japanese billionaire Yusaku Maezawa and the rocket maker for a lunar trip in 2023. SpaceX’s earliest NASA-backed trip to the Moon is set for 2022 while the agency’s own Artemis mission has 2024 on its calendar for launch.
You can watch NASA’s full Artemis mission booster test below:
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.