News
SpaceX’s newest Falcon 9 booster arrives in FL as rocket fleet activity rapidly grows
SpaceX’s fifth Falcon 9 Block 5 first stage was spotted a few dozen miles away from arriving at Cape Canaveral at the same time as a freshly launched and landed Block 5 booster was being transported from its drone ship at Port Canaveral to Kennedy Space Center.
The now flight-proven booster in question – B1047 – completed a successful launch of the massive 7100 kg Telstar 19V satellite on July 22nd (EDT), after which it landed safely aboard East Coast drone ship Of Course I Still Love You. Three days after that, sooty Falcon 9 B1047 arrived at Port Canaveral, where it took five days to prepare for transport to one of SpaceX’s several Floridan refurbishment facilities. That transport was captured by an impressive number of independent observers from start to finish, in this case winding up at Pad 39A’s hangar (or horizontal integration facility, HIF) for examination and refurbishment before its next launch.
- B1047 returned safe and sound to Pad 39A for refurbishment less than a week after launching and landing. (Instagram /u/d_lo_ags)
- Likely taken around the same time, Instagram /u/acslater90 took this photo from the opposite direction. (Instagram – acslater90)
- B1047 seen rolling into 39A’s integration hangar for refurbishment on July 31st. (Reddit – Kent767)
Simultaneously, multiple separate members of the subreddit /r/SpaceX observed a different Falcon 9 rocket booster being transported in Western Florida and later Orlando, this time a brand new core shrink-wrapped in the usual black plastic – fresh from static fire testing in McGregor, Texas. A photographer flying in the area in mid-July caught the most likely booster candidate (B1050) vertical on the Texas static fire test stand, rounding out a dizzying array of photos documenting SpaceX’s rigorous test and transport system in action over the last several months.
B1050 will likely be tasked with lifting communications satellite Es’hail-2 in very late August or early September. Intriguingly, the appearance of B1050 in Florida also happens to indicate that SpaceX’s next West Coast launch – SAOCOM 1A, NET September 5th – will have to launch aboard a flight-proven Block 5 booster, of which B1047 and B1048 will be up for consideration. B1051, the next new Block 5 booster expected to ship from Hawthorne to Texas to launch pad, is specifically reserved for SpaceX’s first Crew Dragon mission (DM-1), an uncrewed demo flight that could launch in October or November.
- Crew Dragon gleams in the orbital sunlight before the ISS. The spacecraft’s first launch has reserved Falcon 9 B1051, the next serial booster expected to leave SpaceX’s factory.(SpaceX)
- Falcon 9 B1050 on its way to McGregor for static fire testing, July 6th.
- SpaceX tests all new Falcon 9 boosters and upper stages in Texas before launch. (Aerial Photo/Teslarati)
- Two weeks after it was spotted on the McGregor static fire stand, B1050 rolled into Orlando, FL on July 31st, headed East to Cape Canaveral. (Reddit – alexbrock57)
It’s likely that B1051’s testing and static fire in McGregor will take much longer than the average booster acceptance testing, meaning that the facility’s Falcon 9 booster test capabilities will likely be saturated for a month or longer, pushing B1052’s commercial launch readiness into late September or early October. In reality, B1048 is the only practical option for an early or mid-September launch in California, and that tentative and unofficial booster reflight would crush the current rocket turnaround record by more than four weeks (42 days vs. 72 days).
Booster B1048 just completed its successful debut with the launch of Iridium NEXT-7 and has been under the watchful care of SpaceX recovery technicians since its July 27th return to Port of San Pedro aboard autonomous spaceport drone ship Just Read The Instructions (JRTI). Of particular note, SpaceX technicians took the extraordinary step of opening up B1048’s Merlin engine service bay panels (one per engine along the circumference of the rocket’s base) for several hours on July 30th.
As far as Falcon recoveries go, SpaceX has never been documented performing a similar procedure while the booster is still dockside – perhaps it’s related to the fact that B1050’s East Coast arrival means B1048 will have to be ready for its second launch faster than any SpaceX rocket before it.
- A SpaceX recovery technician works beneath Falcon 9 B1048’s massive octaweb and Merlin 1D engines, July 30. (Pauline Acalin)
- SpaceX technicians examine F9 B1048’s quick-disconnect panel, the interface for much of the vehicle’s fluids and on-pad communications. (Pauline Acalin, 07/30/18)
- A symphony of rocket wrenching, July 30th. (Pauline Acalin)
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.









