News
NIO ET7 audio system reveals how important software will be in future vehicles [Editorial]
NIO went the extra mile—and then some—when it conceptualized the audio system for the ET7. The NIO ET7 has 23 speakers powered by Swedish digital audio pioneer Dirac’s Opteo Professional audio software and Dolby Atmos technology.
NIO and Dirac’s work on the ET7’s audio system reveals the changing design of the car’s cabin and the role software plays in its redesign.
The NIO ET7’s Sound
Every automaker has a specific sound they would like their passengers to enjoy in their vehicles. NIO also has a particular sound target, and for the ET7, the Chinese automaker wanted it to come through crystal clear.
NIO worked closely with Dirac to create its sound. The NIO ET7’s official online page states that the four-seater car has 23 speakers, four overhead speakers, and a subwoofer. It also has a 20-channel amplifier and comes standard with Dolby Atmos Technology.
NIO didn’t just add lots of speakers to the ET7, though. The China-based automaker together with Dirac were meticulous and intentional with the ET7’s audio system.
Redefining the Cabin
Audio experts must consider the environment the sound will be played in, making it challenging to work with vehicles. Lars Carlsson, the Head of Business Development Automotive Audio and Vice President at Dirac, told Teslarati that audio experts have to consider many things when creating the perfect sound inside a vehicle. They have to consider the number and position of the speakers and the number of seats in the vehicle. Audio experts must also consider how sound reflects on the cabin’s different surfaces and windows.
Each speaker output in the NIO ET7 was measured with 16 microphones, positioned in each seat for a total of 64 measurement positions in the cabin. The measured data gave Dirac a good overview of the acoustic performance of the car’s cabin and creates the base for Dirac’s patented algorithms to optimize the sound.
“We base everything on measurements and data. Our process really saves audio engineers a lot of time. They can tune on their computer instead of spending weeks in the car,” Carlsson said.
After measuring the cabin, Dirac used algorithms to “derive the optimum solution” for its sound field control technology. With sound field control, Dirac created “super speakers” for the ET7. Typically, there are three speakers in a car door: low frequency, mid-range frequency, and a tweeter for the high frequency. Dirac uses sound field control to digitally align the speakers, making them collaborate to realize one full, quality sound.
“In addition our algorithm lets the speakers in the cabin and the subwoofer collaborate to create an even sound field in the car, which means we can actually create an equal audio experience in every seat. You get the voice right in front of you and a good imaging and a very even bass distribution and tight bass,” explained Carlsson.

Software’s Critical Role in Future Vehicles
Software is playing an increasingly important role in the auto industry as automotive OEMs and startups reconceptualize the idea of the vehicle. Now, automakers are reimagining the use of the car cabin as more vehicles integrate autonomous software.
Software lies at the center of redesigning the cabin space for passenger activities. Many automakers have started investing in software for their vehicles. For instance, Volkswagen invested €2 billion in a joint venture with China-based Horizon Robotics. And Stellantis launched a software development center in India recently.
Audio, in particular, is beginning to play a more significant role in the cabin as automakers introduce more types of media for passengers to enjoy while on the road. Electric cars coming out on the market have fun new features now, like karaoke, videos, games, and more which rely heavily on audio systems. However, it is autonomy that drives the cabin’s redesign.
“We have an enormous interest for our solutions because audio is getting more and more important in the car. This is true for electric cars because it’s a quieter environment but also when looking into autonomous cars, where maybe you’ll be working in your car, you’ll be listening to music, you’ll be watching videos, you’ll have maybe rotating seats,” said Carlsson.
“There’s a lot of challenges also coming ahead, but I would say that Dirac is very well equipped for future challenges because software for anything in the cars is key,” he added.
The Teslarati team would appreciate hearing from you. If you have any tips, contact me at maria@teslarati.com or via Twitter @Writer_01001101.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.