News
Rocket Lab Electron returns to flight as FAA approves launches from the US
Rocket Lab, the space systems company and small satellite launcher, returned to active launch status recently with the successful fourteenth launch of its Electron rocket. The “I Can’t Believe It’s Not Optical” mission marked Rocket Lab’s comeback after suffering an in-flight anomaly during Electron’s thirteenth flight on July 4, 2020.
Just nine weeks after the conclusion of the incident investigation, following its successful return to flight, Rocket Lab has announced that it has been granted a five-year Launch Operator License – permission to launch multiple missions a year – by the Federal Aviation Administration (FAA) for its new Launch Complex 2 in Virginia.

“I Can’t Believe It’s Not Optical,” Electron’s Return to Flight
The thirteenth flight of Electron “Pics or It Didn’t Happen” on July 4 began with a flawless launch from Launch Complex – 1A (LC-1A) in Mahia, New Zealand. During the flight of the second stage, there were indications that Electron had experienced a critical malfunction. Telemetry data confirmed that Electron had encountered an in-flight anomaly that ultimately resulted in the company’s first mission failure and loss of seven customer payloads.
The root cause of the anomaly was quickly tracked down to a single bad electrical connection on the second stage. Less than a month after the incident, Rocket Lab announced that it was able to reconstruct what occurred, make the necessary corrective measures, and ready to return Electron to flight.
Just a few short weeks later on August 24, Electron was on pad LC-1A in New Zealand for pre-flight testing ahead of its fourteenth – and return to flight – mission “I Can’t Believe It’s Not Optical.” The dedicated mission for San Francisco-based information services company, Capella Space, carried a single microsatellite called “Sequoia” to a circular orbit at approximately 500km.
According to a statement provided by Rocket Lab, Sequoia is the “first synthetic aperture radar (SAR) satellite to deliver publicly available data from a mid-inclination orbit over the U.S., Middle East, Korea, Japan, Europe, South East Asia, and Africa.” Sequoia is the first microsatellite in a constellation series that Capella Space says will “provide insights and data that can be used for security, agricultural and infrastructure monitoring, as well as disaster response and recovery.”

The success of “I Can’t Believe It’s Not Optical” marks the thirteenth successful mission and the deployment of Sequoia makes a total of 54 satellites delivered to orbit since Rocket Lab began operation in 2017. Rocket Lab founder and chief executive officer, Peter Beck, congratulated Capella Space on the successful deployment of its first microsatellite and celebrated the entire Rocket Lab team stating that “I’m also immensely proud of the team, their hard work, and dedication in returning Electron to the pad safely and quickly as we get back to frequent launches with an even more reliable launch vehicle for our small satellite customers.”
FAA certifies Electron launches from the US
In addition to LC-1A in New Zealand, Rocket Lab broke ground on a second launchpad located in the United States in late 2018. The launchpad was declared complete in December 2019.
Although operational, Launch Complex 2 located at the Mid-Atlantic Regional Spaceport within NASA’s Wallops Flight Facility on Wallops Island in Virginia still had a few milestones to achieve ahead of the first scheduled launch. In April 2020 an Electron rocket arrived at the pad for integrated systems tests. Two major hurdles left to clear ahead of launching an Electron from LC-2 was receiving a launch operator license from the Federal Aviation Administration (FAA) and receiving NASA certification of the Electron’s Autonomous Flight Termination System (AFTS).
On Tuesday, September 1, Rocket Lab announced that it had received a new 5-year Launch Operator License from the FAA. The license permits California-based launcher and space systems company to launch the Electron rocket from LC-2 multiple times a year without applying for a new license with every launch. This in addition to the Launch Complex 1 license means that Rocket Lab is now licensed to support up to 130 flights of Electron per year.
In addition, LC-1 is expected to expand and bring a second launchpad online, launch complex – 1B, sometime before the end of the year. Beck said, “Having FAA Launch Operator Licenses for missions from both Rocket Lab launch complexes enables us to provide rapid, responsive launch capability for small satellite operators. With 14 missions already launched from LC-1, Electron is well established as the reliable, flight-proven vehicle of choice for small sat missions spanning national security, science and exploration.”
Launch Complex 2 was specifically designed to support responsive missions for NASA and the United States government. The first mission from LC-2 is slated to lift the microsatellite STP-27RM for the United States Air Force as part of the Space Test Program. In 2021 Electron will send NASA’s CAPSTONE mission to a “Near Rectilinear Halo Orbit” (NRHO) around the Moon in support of NASA’s Artemis program.
Even more news…
On Thursday, September 3, Rocket Lab founder Peter Beck will host a webcast to provide an “exciting update” and discuss “the next chapter” of Rocket Lab. The webcast will go live at 2:00 pm ET (18:00UTC).
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:Â
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.Â
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.Â
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.Â
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.Â
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.Â
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.