Connect with us

News

Rocket Lab’s NASA Moon launch to kick off new era of ultra-cheap deep space exploration

Photon separates from Electron's second stage and begins burning to escape Earth's gravity well. (Rocket Lab)

Published

on

Rocket Lab will soon take its tiny Electron rocket further than any similarly-sized vehicle before it, sending a NASA satellite to the Moon and potentially kicking off a new era of unprecedentedly cheap space exploration.

On February 14th, the world-leading small satellite launch company announced – alongside NASA – that the space agency had awarded it a $9.95 million launch contract worth $9.95 million to send the $13.7 million Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) CubeSat to lunar orbit. In other words, NASA has contracted a full-up scientific mission to the Moon for less than $25M total – almost unfathomably cheap compared to all interplanetary exploration performed in the last half-century.

The mission announcement comes just four months after Rocket Lab announced at the International Astronautical Congress in Washington D.C., that it would utilize its small two-stage rocket, Electron, and proprietary satellite bus platform, Photon, to support lunar orbit missions. It also occurs just two months after the official opening of Rocket Lab’s Launch Complex 2 located in Wallops, Virginia – a dedicated facility to specifically service NASA and the US government launch contracts.

According to Ana Rivera, LSP program integration manager for CAPSTONE, the launch will be Rocket Lab’s “inaugural NASA launch from their new launch site at the Mid-Atlantic Regional Spaceport in Virginia” and is expected to occur in the early part of 2021.

Advertisement
-->
With a small extra fuel tank attached to its nose, Photon burns its small engine to send CAPSTONE on its way to the Moon. (Rocket Lab)

NASA’s CAPSTONE is a tiny spacecraft weighing around 55 lb (25 kg) – small enough for an equally tiny rocket to send it on an improbable journey. Rocket Lab’s two-stage Electron rocket will begin by launching CAPSTONE to LEO, where NASA says Photon – a Rocket Lab-built kick stage and satellite bus – will send CAPSTONE on its way to the Moon. CAPSTONE will then use its own propulsion system to enter a “Near Rectilinear Halo Orbit” (NRHO) around the Moon.

It is important to note that, under its own propulsion, CAPSTONE is expected to take nearly three months to reach its intended orbit around the moon. However, the CAPSTONE mission is an imperative one that could lead to better understandings about the journey to the moon and “can reduce navigation uncertainties ahead of our future missions using the same lunar orbit” according to Marshall Smith, director of human lunar exploration programs at NASA Headquarters.

https://twitter.com/RocketLab/status/1186725033344983040

Rocket Lab founder and CEO Peter Beck stated that Rocket Lab is “able to provide NASA with complete control over every aspect of launch and mission design for CAPSTONE, something typically only available to much larger spacecraft on larger launch vehicles. In the same way (Rocket Lab) opened access to low Earth orbit for small satellites, we’re proud to be bringing the Moon within reach to enable research and exploration.”

Photon – the all-in-one experience

Photon is a satellite bus platform designed with interplanetary delivery and deep space communication in mind. The small, but mighty, launch-to-orbit bus features downlink communication capability, radiation-tolerant avionics, and higher power generation. Photon is also able to precisely deploy multiple small payloads into various orbits enabling multiple mission launches supported by Rocket Lab’s proprietary Curie propulsion system.

In the era of NASA’s Artemis initiative to return astronauts to the moon, Beck explains that “small satellites will play a crucial role in science and exploration, as well as providing communications and navigation infrastructure to support returning humans to the Moon.” In this sense, small satellites will serve as pathfinders and build the necessary infrastructure prior to the arrival of more robust hardware such as NASA’s lunar spaceship Gateway and eventually human space travelers.

Advertisement
-->
The Rocket Lab in-house designed and manufactured a small satellite platform – Photon. (Rocket Lab)

To date, Rocket Lab has successfully launched 11 missions and 48 satellites to low-Earth orbit. Eventually, Rocket Lab intends to use a recoverable and reusable Electron to loft Photon on interplanetary missions to lunar fly-by orbits, Near Rectilinear Halo Orbit (NRHO), and low-Lunar Orbit by the end of 2020. The two most recent missions – Running Out Of Fingers and Birds of a Feather – featured an upgraded first-stage of Electron that survived re-entry in one piece. This will hopefully lead to a fully recoverable first-stage rivaling the current recovery efforts of SpaceX with its first stage of the Falcon 9 boosters.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Space Reporter.

Advertisement
Comments

News

Tesla Model 3 named New Zealand’s best passenger car of 2025

Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

Published

on

Credit: Tesla Asia/X

The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals. 

Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.

Why the Model 3 clinched the crown

DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.

First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

FSD changes everything for Kiwi buyers

The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.

Advertisement
-->

At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.

Continue Reading

News

Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck

FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.

Published

on

Credit: Grok Imagine

It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners. 

For the Tesla AI team, at least, it appears that work really does not stop.

FSD V14.2.1

Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added. 

“Camera visibility can lead to increased attention monitoring sensitivity.”

Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.

Advertisement
-->

Rapid FSD releases

What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.” 

FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles. 

Continue Reading

News

Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Published

on

Credit: wudapig/Reddit

Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers. 

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Toyota designer observes a trend

Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.

“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.

The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.

Advertisement
-->

Cybercab suddenly looks perfectly sized

Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.

With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.

While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining  9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles. 

Continue Reading