Connect with us

News

Rocket Lab assembling first reusable Neutron rocket hardware

Rocket Lab has begun assembly full-scale parts of its next-gen Neutron rocket. (Peter Beck)

Published

on

Rocket Lab appears to have made significant progress since revealing the state of hardware development for its next-generation Neutron rocket in a September 2022 investor update.

At the time, the company shared photos of early work on prototypes of smaller Neutron structural elements, as well as progress building the giant molds that will be used to ‘lay up’ the rocket’s carbon fiber composite tanks and airframe. Rocket Lab also showed off acquisitions of some of the supersized manufacturing equipment that will be used to build the giant rocket, as well as the beginnings of a dedicated Neutron factory in Virginia.

Four months later, photos shared by CEO Peter Beck show that Rocket Lab has progressed to full-scale carbon fiber hardware manufacturing. In December 2022, Beck shared a photo of a full-size Neutron tank dome in the middle of production. A month later, Beck shared a photo of work on both halves of a Neutron booster tank dome. Measuring around seven meters (23 ft) wide, the latter component is already on track to become one of the largest carbon fiber structures ever prepared for a rocket once the halves are joined. And once two more halves are built and assembled, Rocket Lab could soon be ready to start testing full-scale Neutron tank hardware – a crucial milestone for any new rocket.

In a September 2022 investor update, Rocket Lab shared glimpses of the first Neutron hardware.
Four months later, CEO Peter Beck has shared photos of far larger and more mature hardware.

Announced in March 2021 and properly unveiled in December 2021, Neutron is a partially-reusable two-stage rocket designed to launch up to 15 tons to Low Earth Orbit (LEO) using liquid methane and oxygen propellant. Neutron measures 42.8 meters (140.4 ft) tall and up to seven meters (23 ft) wide. Its stout, ballistically-optimized design means that it’s simultaneously 40% shorter and up to 190% wider than SpaceX’s workhorse Falcon 9 rocket.

Design differences aside, Neutron is the first rocket that has been obviously designed as an answer to Falcon 9, which has become one of the most prolific, cost-effective, and routinely reusable rockets in the world over the last five or so years. Depending on how much Rocket Lab can sell Neutron for while still breaking even, Neutron has the potential to give Falcon 9 a serious run for its money – or at least force SpaceX to lower its prices. Like Falcon 9, Neutron will have a reusable booster, a reusable payload fairing, and an expendable upper stage. Its booster will also have nine (Archimedes) engines and the upper stage will be powered by one engine. At liftoff, Neutron will produce up to 674 tons (1.49M lbf) of thrust to Falcon 9’s 770 tons (1.7M lbf).

Advertisement

Unlike Falcon 9, Neutron’s similarly-sized reusable fairing is integral, meaning that it will stay permanently attached to the booster. But despite the added mass of the integral fairing and the rocket’s significantly shorter layout, Rocket Lab says that Neutron will be able to launch up to 13 tons (~28,700 lb) to LEO if the booster lands on a barge downrange. Using the same approach with a deployable fairing, Falcon 9 has launched up to 16.7 tons (~36,800 lb) to LEO. That 23% performance gap may seem significant, but the reality is that only SpaceX’s own Starlink and Dragon missions have ever needed Falcon 9 to launch more than 13 tons to orbit.

If Neutron can consistently launch ~25% less payload than Falcon 9 to all Earth and near-Earth orbits, virtually every commercial launch contract that’s currently a SpaceX shoo-in could be within reach of Rocket Lab within several years. The challenge, of course, is building Neutron and making sure the ambitious rocket and its clean-sheet Archimedes engine work as expected and can be reused as easily as Falcon 9.

The company is attempting to get there with its far smaller Electron vehicle, but Rocket Lab has never reused a rocket. And five and a half years after Electron’s debut, the company has never launched more than nine times in one year. SpaceX is about to reuse a Falcon booster for the 140th time and launched 61 times in 2022 – a lead that may prove almost impossible to close. There’s also the fact that the size gap between Rocket Lab’s rockets is so extreme that Neutron could likely launch a fully-fueled Electron into orbit.

A list of Rocket Lab’s ambitious 2023 Neutron development goals.

But again, SpaceX serves as a demonstration that what Rocket Lab hopes to achieve is not impossible. SpaceX went directly from Falcon 1 (about twice as large as Electron) to Falcon 9 V1.0 (about 30% smaller than Neutron) after just two successful launches of the smaller rocket. Electron has successfully launched 29 times since May 2017 and Rocket Lab is already learning about reusability through the smaller rocket. The challenges facing Rocket Lab are huge, but Neutron still remains the most promising SpaceX competitor currently in development. Kicking off full-scale Neutron tank testing just 2-3 years after the rocket was revealed would only reiterate its strengths. Stay tuned to see how much Neutron progress Rocket Lab can make in 2023.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla makes a massive change to a Service policy that owners will love

If you have a subscription to Full Self-Driving or Premium Connectivity for 30 days, the date of its expiration is 30 days after you activate the subscription, even if the vehicle was in service.

Published

on

Credit: Tesla

Tesla has decided to update its policy on Subscriptions and Service, and owners are going to love it.

If you have a subscription to Full Self-Driving or Premium Connectivity for 30 days, the date of its expiration is 30 days after you activate the subscription, even if the vehicle was in service.

So, if your car was with Tesla Service for five days, you essentially lost those five days, as your expiration date was not adjusted to reflect the time the vehicle was unusable.

Loaners that Tesla gives owners are usually equipped with perks like Full Self-Driving and Premium Connectivity, so your subscription does not roll over to another vehicle.

Tesla launches new loaner program that owners will love

However, Tesla has decided to revise that policy in an effort to give owners full access to the subscriptions they paid for. It requires Service visits to be longer than one day.

In a communication to an owner who was having their vehicle serviced, Tesla said:

“A loaner vehicle may be available during your appointment (pending availability) – please check the app closer to your appointment for the latest updates and access details. If your repair requires more than one business day, any active subscriptions or free trials will be extended accordingly.”

The move is a good one from a customer service standpoint, especially considering the loss of even a few days of a 30-day subscription to something like Full Self-Driving, which costs $99 per month, can be frustrating.

Tesla’s choice to extend the subscription duration for the length of the service visit is a good-faith move that customers will appreciate.

While this adjustment is not directly related to Service, many customers will relate it to that. It’s yet another move Tesla has made in 2025 to make its Service experience better for customers.

It is also offering more options to communicate with Service advisors during and after cars are repaired, which can help streamline the entire visit from start to finish.

Continue Reading

News

SpaceX reaches incredible Starlink milestone

Published

on

Credit: SpaceX

SpaceX has reached an incredible milestone with its Starlink program, officially surpassing 10,000 satellites launched into low Earth orbit since starting the program back in 2019.

Last Sunday, October 19, SpaceX launched its 131st and 132nd Falcon 9 missions of 2025, one from Cape Canaveral, Florida, and the other from Vandenberg, California.

The 10,000th Starlink satellite was aboard the launch from California, which was Starlink 11-19, and held 28 v2 mini optimized satellites.

The achievement was marked by a satellite tracker developed by Jonathan McDowell.

The first Starlink launch was all the way back on May 23, 2019, as SpaceX launched its first 60 satellites from Cape Canaveral using a Falcon 9 rocket.

Of the over 10,000 satellites in orbit, the tracker says 8,608 are operational, as some are intentionally de-orbited after becoming faulty and destroyed in the atmosphere.

SpaceX has truly done some really incredible things during its development of the Starlink program, including launch coverage in a global setting, bringing along millions of active subscribers that use the service for personal and business use, locking up commercial partnerships, and more.

Starlink currently operates in around 150 countries, territories, and markets and is available at least somewhere on all seven continents.

Additionally, Starlink has over 5 million subscribers worldwide, and 2.7 million have joined the program over the past year. It has revolutionized internet access on commercial aircraft as well, as several high-profile airlines like Qatar and United, among many others, have already installed Starlink on some of their planes to deliver more stable connectivity for passengers and crew.

SpaceX has the approval to launch 12,000 Starlink satellites from the FAA, but it plans to bring over 30,000 to its constellation, giving anyone the ability to have access to high-speed internet.

Continue Reading

News

Tesla Full Self-Driving’s biggest improvements from v13 to v14

Published

on

Credit: Tesla

Tesla Full Self-Driving (Supervised) v14 has been out for several weeks now, and there are a tremendous number of improvements, as we have now reached the fourth iteration of the semi-autonomous software.

Tesla began the v14.1.4 launch last night, which included minor improvements and addressed brake-stabbing issues many owners have reported. In my personal experience, the stabbing has been awful on v14.1.3, and is a major concern.

However, many things have improved, and only a couple of minor issues have been recurring. Many of the issues v13 addressed are no longer an issue, so Tesla has made significant progress.

Here are some of the most notable improvements Tesla made with v14 from v13:

Better Lane Switching on Highways

One of my biggest complaints with v13 was that the “Hurry” Speed Profile would often stay in the left lane, even when there were no passing cars. The legality of cruising in the left lane fluctuates by jurisdiction, but my personal preference is to drive in the right lane and pass on the left.

That said, Tesla has improved FSD’s performance with more courteous lane behavior. It no longer camps in the left lane and routinely gets back in the right lane after passing slower cars.

More Awareness for Merging Traffic and Makes Courteous Moves

There have been times when FSD has been more aware of merging traffic, and even cross traffic, than most human beings.

Here are a few examples –

  • Full Self-Driving lets a car out of cross traffic during a busy time of day. This road tends to get very congested, especially during rush hour, so the car that was let in by FSD would have been sitting there for likely a minute longer if my Tesla had not let him in:

  • A busy, four-lane expressway with a quick exit on the far side of the highway for this merging vehicle. I’ve seen some drivers be extremely inattentive and travel at the same speed as merging cars, making their entry onto the expressway less seamless. FSD doesn’t do that; it makes way for merging cars:

More Confident Driving Around Mail Trucks…and Amish

I encounter a lot of Amish in my area of Pennsylvania, and they commonly use both shoulders and the road, so traffic can get congested at times.

In the past, I’ve taken over when encountering Amish buggies, mail trucks, or other vehicles that are moving slowly or making frequent stops. I have felt it is more logical to just take over in these situations.

I decided not to yesterday on a long drive through Lancaster, PA, and the FSD did a wonderful job of confidently overtaking these vehicles:

This was really impressive and fun to see. There was a slight stutter during one of the three instances, but overall, I didn’t have any concerns.

Object Avoidance

On v13, I almost let the car drive into a fallen branch in the middle of the road. A mile later, the car swerved out of the way for horse droppings. It was a beautiful, clear morning, and the fact that the car did not try to avoid the branch, but did steer away from poop, was concerning.

Tesla has obviously done a great job at refining FSD’s ability to navigate around these road hazards. Last night, it swerved around a dead animal carcass in the middle of the highway. I didn’t see it until we were already going around it:

It was awesome to see this and never feel alarmed by the sharp movement. The maneuver was smooth and really well done.

Better Speed Consistency

With v13, I felt I had to constantly adjust the Speed Profile, as well as the Max Speed setting, when using FSD. With V14, I don’t feel like I am making as many adjustments.

Tesla axed the Max Speed setting altogether with v14, which was a good move, in my opinion. Choosing the Speed Profile is now more intuitive by using the right scroll wheel. If the car is traveling too fast or too slow, just change the profile.

Three things Tesla needs to improve with Full Self-Driving v14 release

V13 had some issues with local roads, and I felt it would travel at strange speeds. In a 45 MPH zone, it would sometimes take a long time to reach 40 MPH, then hover between 43 MPH and 47 MPH. It would then fluctuate between those two speeds, frustrating drivers behind me, understandably.

V14 gets up to speed much better and travels at speeds I’m much more comfortable with on both local roads and highways.

Continue Reading

Trending