Connect with us

News

Rocket Lab channels SpaceX-like rapid launch capability in July 4 Electron mission

A Rocket Lab Electron launch vehicle is pictured during final processing ahead of the company's 13th launch. (Credit: Rocket Lab)

Published

on

The prominent launcher of dedicated small satellite launches, Rocket Lab, looks to achieve SpaceX-like rapid launch capability of its Electron rocket. The company is targeting its shortest turn around time between missions from the same launch pad. Just three weeks ago, Rocket Lab returned to operational launch status following the easement of Covid-19 restrictions at the company’s Launch Complex 1 in Mahia, New Zealand. The Electron rocket completed its twelfth mission nicknamed “Don’t Stop Me Now” which supported a rideshare payload of five smallsats to orbit. Now, Rocket Lab is ready for its third mission of 2020 – the second in just three weeks – with Electron’s thirteenth mission “Pics Or It Didn’t Happen.”

Rideshare mission of space cameras

The “Pics Or It Didn’t Happen” mission features a rideshare manifest consisting of seven small satellite payloads for customers Planet, In-Space Missions, and rideshare and mission manager Spaceflight Inc.’s customer Canon Electronics. The majority of payloads are Earth-imaging satellites inspiring the “Pics Or It Didn’t Happen” mission nickname. The primary payload, Canon Electronics Inc.’s CE-SAT-IB microsatellite, will demonstrate the company’s high definition and wide-angle Earth-imaging capabilities and will serve as a testbed for future opportunities of mass production. Also aboard Electron is five of Planet’s latest generation SuperDove (Flock4e) Earth-observation satellites equipped with new sensors to produce higher quality images of Earth’s landmass on a near-daily basis. The UK enterprise In Space Missions provides the final payload with its maiden Faraday-1 6U CubeSat. According to In Space Missions, Faraday-1 is “the first in a series of satellites that will provide a turnkey service for commercial customers and research organizations wanting to access to space at a competitive and affordable cost.” Currently, In Space Missions has four more satellites under contract with the Faraday service.

Rocket Lab’s carbon composite Electron booster propelled by nine 3D-printed Rutherford sea-level engines capable of 36,000lbf (162kN) of thrust will send all payloads to a 500km sun-synchronous low Earth orbit at an inclination of 97.5 degrees.

Advertisement
-->

Rapid launch capability within reach

According to Rocket Lab, a new Electron booster is produced in-house approximately every eighteen days at its production facility in Auckland, New Zeland. While Electron currently only launches from Launch Complex 1 on New Zeland’s Mahia Peninsula, Rocket Lab looks to further open small satellite access to orbit and expand its launching capabilities with two more operational launch complexes targeted to begin service later this year. The Mahia Peninsula location has recently undergone expansion, adding the neighboring Launch Complex 1B while a third launch location, Launch Complex 2, has been opened at the Mid-Atlantic Regional Spaceport in Wallops Island, Virginia.

Advertisement
-->

Rocket Lab Founder and CEO, Peter Beck, states that multiple launch locations “enables our small sat operators to do more, spend less, and get to orbit faster” and that “Rocket Lab has eliminated the small sat waiting room for orbit. We’ve focused heavily on shoring up our rapid launch capability in recent years and we’re proud to be putting that into practice for the small sat community with launches just days apart.”

With an expansive backlog of Electron boosters, Rutherford engines, and the capability to soon launch missions back-to-back from neighboring launchpads Rocket Lab aims to break into the market of rapid launch capability joining the likes of SpaceX and its Falcon 9 rocket which has launched 91 times (89 times successfully) since 2010. The company also looks to break into the booster recovery market also pioneered by SpaceX.

Earlier this year, Rocket Lab completed a successful mid-air recovery demonstration of a parachute equipped test article with a helicopter and a specially designed grappling hook. Beck recently revealed on Twitter that Rocket Lab is targeting the seventeenth flight of the Electron to debut fully operational recovery efforts of the first stage booster to occur at some point before year’s end.

Advertisement
-->

The “Pics Or It Didn’t Happen” mission previously scheduled for July 3rd, moved to July 5th, then pushed up to July 4th is now targeting liftoff NET 21:19 UTC/5:19 pm EDT from LC-1 in New Zealand taking advantage of more favorable launch weather conditions. Rocket Lab has stated on Twitter, however, that there is a “relatively high chance” of the launch attempt scrubbing to a later date as the possibility of high ground winds still persists. Should they be needed, backup launch opportunities extend through July 16th.

The “Pics Or It Didn’t Happen” Electron and payload are currently vertical at LC-1 ahead of the launch attempt. A Livestream of the effort will be made available approximately fifteen minutes ahead of liftoff posted to the company’s social media accounts and available on the company’s website: www.rocketlabusa.com/live-stream.

Space Reporter.

Advertisement
Comments

News

Tesla Model 3 named New Zealand’s best passenger car of 2025

Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

Published

on

Credit: Tesla Asia/X

The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals. 

Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.

Why the Model 3 clinched the crown

DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.

First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

FSD changes everything for Kiwi buyers

The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.

Advertisement
-->

At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.

Continue Reading

News

Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck

FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.

Published

on

Credit: Grok Imagine

It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners. 

For the Tesla AI team, at least, it appears that work really does not stop.

FSD V14.2.1

Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added. 

“Camera visibility can lead to increased attention monitoring sensitivity.”

Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.

Advertisement
-->

Rapid FSD releases

What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.” 

FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles. 

Continue Reading

News

Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Published

on

Credit: wudapig/Reddit

Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers. 

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Toyota designer observes a trend

Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.

“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.

The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.

Advertisement
-->

Cybercab suddenly looks perfectly sized

Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.

With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.

While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining  9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles. 

Continue Reading