Connect with us

News

Space ‘superstorms’ and their impact on Earth’s protective shield

Solar flares can send charged particles racing through space. When they come in contact with the Earth, they can generate space weather. Credit: NASA

Published

on

The European Space Agency (ESA) together with NASA is gearing up for the launch of the Solar Orbiter spacecraft a 3,975-lb. (1,800 kg) sun-observing satellite.

Designed to study the sun up close, Solar Orbiter will take the first photos of the sun’s pole as well as provide scientists with crucial data to help guarantee against space weather.

Most of us look up at the sun and think of it as just a glowing orb in the sky, bathing the Earth in light, but our star has a darker, violent side. (Please do not stare directly at the sun, only Solar Orbiter is equipped to do so. Here are some safe ways to look at our host star.)

The sun regularly produces massive solar flares, which erupt on its surface, spewing X-rays and high-energy particles everywhere. Just eight minutes after the violent outburst, those same X-rays can slam into the Earth’s magnetic field. Most of the time, our protective shield keeps us protected from the sun, but it can be overwhelmed at times.

Advertisement
-->

High energy particles from the sun run along magnetic field lines, like electric currents run through wires, looking for a release. Most often we see the lighter side of the sun’s wrath, in the form of auroras.

But really powerful ones can cripple communication systems and power grids. Radio signals, like the ones we use to communicate, are able to travel great distances through a section of the atmosphere known as the ionosphere. However, when a powerful solar storm is raging, those signals are cut off by the X-rays emitted by the sun and are ultimately drowned out by crackling static.

A recent study, published in the journal Geophysical Research Letters, indicates that the most powerful solar storms can hit once every 25 years, with less intense ones battering the Earth about once every three years.

The team, led by Dr. S.C. Chapman from the University of Warwick, identifies two types of powerful magnetic storms: ‘great super storms’ and ‘severe super storms.’ These two types are both considered dangerous and capable of causing damage to our valuable infrastructure here on Earth.

A view of the sun as seen by NASA’s Solar Dynamic Observatory. NASA/SDO

Also called geomagnetic storms, these cosmic tempests are caused by disturbances inside the sun that send particles streaming out into space. When they slam against our planet’s magnetosphere, they generate space weather, which can be very catastrophic to our sensitive electronics and power grids.

The most famous of these solar storms occurred in 1859. The Carrington Event is the most powerful geomagnetic storm ever recorded. It knocked out telegraph systems around the world, started a few fires, and even shocked some of the telegraph operators.

Advertisement
-->

In 1989, a similar outburst caused issues in Canada. In Quebec, the province’s power supply station was disrupted and incredible auroras filled the sky with light when a wave of solar particles came in contact with the Earth. People as far south as Texas could see the dazzling light display.

https://youtu.be/17KHY3TNssQ

These disturbances look to be increasingly more common and can disrupt all sorts of technology from satellites to global communications systems and more.

The world relies heavily on satellites, which are incredibly vulnerable due to their sensitive parts. Scientists theorize that if a modern-day Carrington event were to happen, it could cost trillions of dollars worth of damages. This is why scientists are using spacecraft, like Solar Orbiter and its counterpart the Parker Solar Probe, to really understand the processes that are taking place.

Advertisement
-->

I write about space, science, and future tech.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading