News
SpaceX to launch quartet of mini geostationary satellites in 2023
Startup Astranis has purchased a dedicated Falcon 9 launch from SpaceX for four miniature geostationary communications satellites.
Known as MicroGEO, the comparatively tiny satellites Astranis is building aim to offer prospective customers an alternative to the immense, expensive satellites that dominate modern geostationary (GEO) communications. Where those flagship satellites tend to weigh anywhere from three to seven metric tons (~6,500-15,500 lb) at liftoff, MicroGEO satellites will weigh around 400 kilograms (~900 lb) – at least a magnitude lighter. Astranis also believes it will be able to eke out about 10 gigabits per second (Gbps) of bandwidth from each tiny satellite, giving them a level of performance that could actually be proportionally comparable to or greater than much larger satellites.
While it’s not clear that Astranis is actually selling its MicroGEOs for “1/20th the cost of traditional GEO communications satellites,” as they claim, the startup has found plenty of customers.
As of March 2022, Astranis has secured contracts to build 11 MicroGEO satellites for a range of customers: one for Alaska’s Pacific Dataport, eight for in-flight and at-sea connectivity provider Anuvu, and one or two for Peru’s Grupo Andesat. Astranis says its deal to launch one satellite for Andesat – with an option for a second – is worth more than $90 million. At that price tag, MicroGEO might cost about half as much as a more traditional entry-level GEO satellite but will only offer 10 Gbps for the money. For twice the price, a prospective customer could easily buy a satellite with at least five to ten times the throughput.
In that sense, MicroGEOs are actually more expensive relative to the performance they offer. Their main benefits appear to be a lower cost of entry, significantly lower launch costs, and the ability to dedicate a whole satellite to a relatively small region or niche service. In that sense, MicroGEO’s draw might be comparable to the reason some launch customers prefer a more expensive dedicated launch on a small rocket over a much cheaper launch as one of many rideshare payloads on a large rocket. For that premium, dedicated launch customers don’t have to worry about the logistics of juggling dozens of other satellites, the risk of related launch delays, or the general need to compromise with other passengers.
While MicroGEO satellite might be significantly less cost-efficient than larger alternatives, smaller customers may find paying a premium preferable to having to find or compromise with other customers to avoid wasting any leftover bandwidth. Additionally, in some unique situations, dedicated MicroGEO satellites may actually be several times cheaper for customers. CEO John Gedmark says that for Peru’s Andesat, MicroGEO offers a “factor of three or a factor of four cost decrease…compared to what they’re paying today [to lease less capacity on existing satellites].”
It’s clear that Astranis’ customers see significant value in MicroGEO. On top of Astranis’ current backlog, Gedmark recently revealed that the company is working on deals for “dozens” of additional satellites and believes that “there will be more than 100 Astranis satellites in active service” by 2030. That means that Astranis’ unique Falcon 9 contract is likely to be the first of many. For perhaps as little as $50 million, a SpaceX Falcon 9 rocket will launch four MicroGEO satellites at once. The relatively tiny payload – likely less than two tons (~4400 lb) – will allow Falcon 9 to launch into a more energetic geostationary transfer orbit (GTO), significantly reducing the amount of time the MicroGEOs will need to reach operational orbits.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.