News
SpaceX to launch quartet of mini geostationary satellites in 2023
Startup Astranis has purchased a dedicated Falcon 9 launch from SpaceX for four miniature geostationary communications satellites.
Known as MicroGEO, the comparatively tiny satellites Astranis is building aim to offer prospective customers an alternative to the immense, expensive satellites that dominate modern geostationary (GEO) communications. Where those flagship satellites tend to weigh anywhere from three to seven metric tons (~6,500-15,500 lb) at liftoff, MicroGEO satellites will weigh around 400 kilograms (~900 lb) – at least a magnitude lighter. Astranis also believes it will be able to eke out about 10 gigabits per second (Gbps) of bandwidth from each tiny satellite, giving them a level of performance that could actually be proportionally comparable to or greater than much larger satellites.
While it’s not clear that Astranis is actually selling its MicroGEOs for “1/20th the cost of traditional GEO communications satellites,” as they claim, the startup has found plenty of customers.
As of March 2022, Astranis has secured contracts to build 11 MicroGEO satellites for a range of customers: one for Alaska’s Pacific Dataport, eight for in-flight and at-sea connectivity provider Anuvu, and one or two for Peru’s Grupo Andesat. Astranis says its deal to launch one satellite for Andesat – with an option for a second – is worth more than $90 million. At that price tag, MicroGEO might cost about half as much as a more traditional entry-level GEO satellite but will only offer 10 Gbps for the money. For twice the price, a prospective customer could easily buy a satellite with at least five to ten times the throughput.
In that sense, MicroGEOs are actually more expensive relative to the performance they offer. Their main benefits appear to be a lower cost of entry, significantly lower launch costs, and the ability to dedicate a whole satellite to a relatively small region or niche service. In that sense, MicroGEO’s draw might be comparable to the reason some launch customers prefer a more expensive dedicated launch on a small rocket over a much cheaper launch as one of many rideshare payloads on a large rocket. For that premium, dedicated launch customers don’t have to worry about the logistics of juggling dozens of other satellites, the risk of related launch delays, or the general need to compromise with other passengers.
While MicroGEO satellite might be significantly less cost-efficient than larger alternatives, smaller customers may find paying a premium preferable to having to find or compromise with other customers to avoid wasting any leftover bandwidth. Additionally, in some unique situations, dedicated MicroGEO satellites may actually be several times cheaper for customers. CEO John Gedmark says that for Peru’s Andesat, MicroGEO offers a “factor of three or a factor of four cost decrease…compared to what they’re paying today [to lease less capacity on existing satellites].”
It’s clear that Astranis’ customers see significant value in MicroGEO. On top of Astranis’ current backlog, Gedmark recently revealed that the company is working on deals for “dozens” of additional satellites and believes that “there will be more than 100 Astranis satellites in active service” by 2030. That means that Astranis’ unique Falcon 9 contract is likely to be the first of many. For perhaps as little as $50 million, a SpaceX Falcon 9 rocket will launch four MicroGEO satellites at once. The relatively tiny payload – likely less than two tons (~4400 lb) – will allow Falcon 9 to launch into a more energetic geostationary transfer orbit (GTO), significantly reducing the amount of time the MicroGEOs will need to reach operational orbits.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.