Connect with us

News

SpaceX beats Falcon 9 recovery records after company’s heaviest launch ever

Falcon 9 B1049.3 returned to port on May 28th after launching ~18.5 tons (~40,000 lb) into orbit, SpaceX's heaviest payload ever. (Tom Cross)

Published

on

Completed on May 30th, SpaceX’s latest Falcon 9 booster recovery smashed several internal speed records, unofficially cataloged over the years by watchful fans.

In short, as the company’s experienced recovery technicians continue to gain experience and grow familiar with Falcon 9 Block 5, the length of booster recoveries have consistently decreased in the 12 months since Block 5’s launch debut. Already, the efficiency of recovery processing has gotten to the point that – once SpaceX optimizes Block 5’s design for refurbishment-free reuse – there should be no logistical reason the company can’t fly the same booster twice in ~24-48 hours.

https://twitter.com/_TomCross_/status/1133438786841600002

The road to rapid reusability

Rarely will it make headlines, but the fact remains that SpaceX’s ultimate goal is not just to reuse Falcon 9 (and other) boosters, but to do so with a level of routine efficiency approaching that of modern passenger aircraft. It’s reasonable to assume that chemical rockets might never reach those capabilities, but they may certainly be able to improve enough to radically change the relationship between humans and spaceflight.

Along that line of thinking, SpaceX CEO Elon Musk decided years ago that an excellent representative goal for Falcon 9 would be to launch the same booster twice in 24 hours. In the last year or so, that largely arbitrary target has changed a bit and is now believed to be a bit wider, aiming for booster reuse within a few days of recovery. This is a pragmatic adjustment more than a technical criticism of Falcon 9.

In general, Falcon 9 simply doesn’t have the performance necessary for routine reusability timelines measured in hours. The majority of SpaceX launches need enough of Falcon 9’s performance to necessitate recovery aboard one of SpaceX’s two drone ships, typically stationed at least a 200-300 km (100-200 mi) offshore. That fact alone almost single-handedly kills any chance of sub-24-hour booster reuse, given that the process of towing the booster-carrying drone ship back to port happens at a max speed of ~10 mph (15 km/h). Just gaining permission to enter the port itself often involves waits of 6+ hours a few miles offshore.

Low orbit, low mass Falcon 9 missions are much more promising for extremely rapid reusability, given that both of SpaceX’s West and East coast landing zones are located just a few miles (or less than 1500 feet, in the case of LZ-4) from their corresponding launch pads and processing facilities. However, these missions are quite rare, while SpaceX’s own low Earth orbit (LEO) Starlink launches will likely involve payloads so heavy that long-distance drone ship recoveries will be necessary.

Falcon 9 B1049 returns to port after its third successful launch and landing in eight months. (Tom Cross)

Finally, there are Falcon Heavy launches, most of which will allow for both side boosters to return to the Florida coast for landings at LZ-1/LZ-2. However, these pose their own barriers to rapid reuse, mainly due to the fact that side boosters – while technically just Falcon 9 boosters – would need major changes to support a single-stack Falcon 9 launch. Falcon Heavy launches simply aren’t going to happen back-to-back over a period of 24-48 hours, so that option is also out of the question.

This means that SpaceX’s only real option for practical rapid reuse is to instead focus on something closer to a weekly launch capability for Block 5 boosters, meaning that the same booster would be able to launch, land, return to shore, and prepare for the next launch in the same week. Even then, launch site readiness may still stand in the way of truly radical improvements in booster reuse and launch frequency. After each launch, SpaceX’s pads and transporter/erectors take a significant beating, requiring routine repairs and maintenance before returning to flight-readiness. Barring major improvements, SpaceX has demonstrated minimum launch-to-launch times of roughly 10 days, and cutting that figure by 50-90% will be a major challenge for a rocket as powerful as Falcon 9.

B1049 takes a step forward

Despite the many logistical reasons that Falcon 9 will likely never lend itself to routine ~24-hour reusability, having that latent capability would still mean that the hardware is advanced enough to offer that efficiency. Even if SpaceX can’t literally fly each booster at its operational capacity, nearly refurbishment-free reflights will still translate into dramatically lower launch costs. Modern civilian aircraft need not fly every second of every day to still be affordable to operate (excluding amortization costs).

Ultimately, SpaceX has been taking small steps in that direction ever since the company began recovering (and reusing) Falcon 9 boosters. Falcon 9 B1049’s third recovery has been one of the best (and most record-breaking) steps yet, but those records were only just broken The most significant statistic to come out of the post-Starlink v0.9 recovery is that B1049.3 took less than 30 hours to go from docking in port to being horizontal on a SpaceX booster transporter. The previous record-holder was Falcon 9 B1046.2, requiring approximately 40 hours for the same feat. B1049.3 also holds the record for fastest recovery overall – just 48 hours from docking to being transported to a SpaceX hangar – but only beat B1051 by about half an hour. In general, Falcon 9 Block 5 has been privy to consistently quick recovery operations and B1049 is just the latest in a long line of reusable SpaceX rockets.

Falcon 9 B1049.3 returned to Port Canaveral on May 28th. (Tom Cross)
B1049.3 bares its well-worn Merlin 1D engines and engine section. (Tom Cross)
(Tom Cross)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla arsonist who burned Cybertruck sees end of FAFO journey

The man has now reached the “Find Out” stage.

Published

on

Credit: U.S. Attorney’s Office, District of Arizona

A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated. 

The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.

A five-year sentence

U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.

As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.

Advertisement
-->

Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members. 

The “Finding Out” stage

U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable. 

“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”

Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible. 

“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”

Advertisement
-->
Continue Reading

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Advertisement
-->
Continue Reading

News

Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening

Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot

Published

on

Credit: Tesla/YouTube

Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.

Calacanis’ comments were shared publicly on X, and they were quite noteworthy.

The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.

“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,”  he noted.

The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.

Advertisement
-->

“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said. 

While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.

Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.

Continue Reading