News
SpaceX beats Falcon 9 recovery records after company’s heaviest launch ever
Completed on May 30th, SpaceX’s latest Falcon 9 booster recovery smashed several internal speed records, unofficially cataloged over the years by watchful fans.
In short, as the company’s experienced recovery technicians continue to gain experience and grow familiar with Falcon 9 Block 5, the length of booster recoveries have consistently decreased in the 12 months since Block 5’s launch debut. Already, the efficiency of recovery processing has gotten to the point that – once SpaceX optimizes Block 5’s design for refurbishment-free reuse – there should be no logistical reason the company can’t fly the same booster twice in ~24-48 hours.
The road to rapid reusability
Rarely will it make headlines, but the fact remains that SpaceX’s ultimate goal is not just to reuse Falcon 9 (and other) boosters, but to do so with a level of routine efficiency approaching that of modern passenger aircraft. It’s reasonable to assume that chemical rockets might never reach those capabilities, but they may certainly be able to improve enough to radically change the relationship between humans and spaceflight.
Along that line of thinking, SpaceX CEO Elon Musk decided years ago that an excellent representative goal for Falcon 9 would be to launch the same booster twice in 24 hours. In the last year or so, that largely arbitrary target has changed a bit and is now believed to be a bit wider, aiming for booster reuse within a few days of recovery. This is a pragmatic adjustment more than a technical criticism of Falcon 9.
In general, Falcon 9 simply doesn’t have the performance necessary for routine reusability timelines measured in hours. The majority of SpaceX launches need enough of Falcon 9’s performance to necessitate recovery aboard one of SpaceX’s two drone ships, typically stationed at least a 200-300 km (100-200 mi) offshore. That fact alone almost single-handedly kills any chance of sub-24-hour booster reuse, given that the process of towing the booster-carrying drone ship back to port happens at a max speed of ~10 mph (15 km/h). Just gaining permission to enter the port itself often involves waits of 6+ hours a few miles offshore.
Low orbit, low mass Falcon 9 missions are much more promising for extremely rapid reusability, given that both of SpaceX’s West and East coast landing zones are located just a few miles (or less than 1500 feet, in the case of LZ-4) from their corresponding launch pads and processing facilities. However, these missions are quite rare, while SpaceX’s own low Earth orbit (LEO) Starlink launches will likely involve payloads so heavy that long-distance drone ship recoveries will be necessary.


Finally, there are Falcon Heavy launches, most of which will allow for both side boosters to return to the Florida coast for landings at LZ-1/LZ-2. However, these pose their own barriers to rapid reuse, mainly due to the fact that side boosters – while technically just Falcon 9 boosters – would need major changes to support a single-stack Falcon 9 launch. Falcon Heavy launches simply aren’t going to happen back-to-back over a period of 24-48 hours, so that option is also out of the question.
This means that SpaceX’s only real option for practical rapid reuse is to instead focus on something closer to a weekly launch capability for Block 5 boosters, meaning that the same booster would be able to launch, land, return to shore, and prepare for the next launch in the same week. Even then, launch site readiness may still stand in the way of truly radical improvements in booster reuse and launch frequency. After each launch, SpaceX’s pads and transporter/erectors take a significant beating, requiring routine repairs and maintenance before returning to flight-readiness. Barring major improvements, SpaceX has demonstrated minimum launch-to-launch times of roughly 10 days, and cutting that figure by 50-90% will be a major challenge for a rocket as powerful as Falcon 9.
B1049 takes a step forward
Despite the many logistical reasons that Falcon 9 will likely never lend itself to routine ~24-hour reusability, having that latent capability would still mean that the hardware is advanced enough to offer that efficiency. Even if SpaceX can’t literally fly each booster at its operational capacity, nearly refurbishment-free reflights will still translate into dramatically lower launch costs. Modern civilian aircraft need not fly every second of every day to still be affordable to operate (excluding amortization costs).
Ultimately, SpaceX has been taking small steps in that direction ever since the company began recovering (and reusing) Falcon 9 boosters. Falcon 9 B1049’s third recovery has been one of the best (and most record-breaking) steps yet, but those records were only just broken The most significant statistic to come out of the post-Starlink v0.9 recovery is that B1049.3 took less than 30 hours to go from docking in port to being horizontal on a SpaceX booster transporter. The previous record-holder was Falcon 9 B1046.2, requiring approximately 40 hours for the same feat. B1049.3 also holds the record for fastest recovery overall – just 48 hours from docking to being transported to a SpaceX hangar – but only beat B1051 by about half an hour. In general, Falcon 9 Block 5 has been privy to consistently quick recovery operations and B1049 is just the latest in a long line of reusable SpaceX rockets.



Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
Humanoid robot battery deals
LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.
China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.
LF Energy Solution vs rivals
According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.
LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.
News
Tesla receives approval for FSD Supervised tests in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.
Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market.
FSD Supervised testing in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.
Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted.
With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.
Tesla FSD Supervised Europe rollout
FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.
Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.
The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months.
News
Tesla owners in Sweden get direct attention from pro-union groups
As part of their efforts, the group has started distributing informational leaflets to Tesla vehicles across Stockholm, urging them to pressure the electric vehicle maker to sign a collective agreement.
Amid Tesla Sweden’s ongoing conflict with trade union IF Metall, a group of pro-union supporters has begun directing their attention to actual Tesla owners.
As part of their efforts, the group has started distributing informational leaflets to Tesla vehicles across Stockholm, urging them to pressure the electric vehicle maker to sign a collective agreement.
Leaflets on parked Tesla vehicles
As noted in a Dagens Arbete (DA) report, participants of the protest place yellow information slips on parked Tesla vehicles across parts of Stockholm. The slips resemble parking notices that contain information related to the unions’ ongoing strike against Tesla Sweden.
Participants involved in the activity said the leaflets were intended to inform consumers rather than target individual owners. The action was carried out in public areas, with leaflets placed on windshields of parked vehicles. When vehicle owners are present, organizers said they provide verbal explanations of the labor dispute.
Tesla has not commented publicly about the matter as of writing.
Recurring demonstrations against Tesla
The leaflet distribution effort follows weekly demonstrations that have taken place outside Tesla’s workshop and office in Upplands Väsby, where protesters typically gather to express support for a collective agreement. Those demonstrations have included informational outreach to customers and workers and, at times, police presence, according to prior reporting.
In a comment, one of the protesters stated that even Tesla owners must be concerned about the unions’ conflict with the electric vehicle maker. “You may think it doesn’t concern you, as you only drive a car. But it does, as we all have a responsibility for the rules in Sweden.
“We are not looking to hunt down individual Tesla owners. Rather, this is a way to spread opinion and increase pressure on Tesla. It should have some impact if several Tesla owners come in and say that you should sign a collective agreement,” one of the protesters stated.