Connect with us

News

SpaceX’s BFR factory in LA spied with four Falcon 9 fairing halves

Published

on

In an unexpected turn of events, Teslarati photographer Pauline Acalin came across a remarkable scene in Port of Los Angeles – four flight-proven Falcon 9 fairing halves temporarily stored on a plot of land soon to become SpaceX’s dedicated BFR factory.

While it’s difficult to guess exactly which fairing half is which, it appears that the halves from PAZ, Iridium-5, and Iridium-6 are present and accounted for. Reminiscent of SpaceX’s late-2016, early-2017 struggles with finding enough space to store their massive flight-proven Falcon 9 boosters, these fairing halves are unable to be reused as a consequence of too much saltwater exposure, making it significantly easier for the company to effectively find any old plot of SpaceX land on which to store them.

A massive panorama of Berth 240 shows the abandoned shipyard in all its gritty glory, as well as initial construction preparations underway. (Pauline Acalin)

Officially in early 2018, SpaceX is leasing Berth 240 with the explicit intent of constructing a dedicated facility for production of their first Mars rocket prototypes, as well as the relocation of Falcon 9 and Dragon recovery ops, which are quite space-constrained at their current berths. By all appearances, contractor Buntich is staging equipment ahead of initial demolition, refurbishment, and construction operations at Berth 240. Known predominately for pipeline and utility construction and refurbishment, it’s likely that the contractor is in the very early stages of modernizing the decades-abandoned shipyard, particularly, utilities like water, gas, electricity, and more.

It may be fairly clear why SpaceX is storing four massive, unwieldy, and unreusable Falcon 9 fairing halves at Berth 240, but it’s much less clear what exactly their fates will be. With yet another added to the pack just this morning after a successful half recovery post-SES-12, SpaceX’s awkward fairing fleet is likely up to six structurally-intact halves now. These halves could be used for drop testing to perfect fairing recovery accuracy and ensure, at long last, that recovery vessel and claw-boat Mr Steven can catch them out of the air, avoiding the vast majority of exposure to seawater. SpaceX CEO Elon Musk recently noted that Mr Steven’s net would apparently be massively expanded, quadrupling its area to relieve some of the burdens of precision currently placed almost entirely on each payload fairing’s navigational capabilities.

Whether drop testing will actually be conducted is thus unclear, as a decision to expand Mr Steven’s net at least partially indicates that SpaceX engineers are less confident in the each half’s ability to reduce their margins of error by approximately 50%. A quadrupling of usable area implies that Mr Steven’s net will most likely be stretched twofold length-wise and width-wise, or perhaps by 50% for the width and 150% for the length to avoid a need for either an elaborate arm retraction mechanism or a comically unwieldy net.

Either way, Mr Steven’s next fairing catch attempt is unlikely to occur until the Falcon 9 Block 5 launch of Iridium-7, currently no earlier than mid-July. This gives recovery engineers and technicians at least five weeks to refine fairing accuracy and expand Mr Steven’s net, and Pauline will undoubtedly be there to capture any significant developments aboard the eclectic vessel as both it and drone ship Just Read The Instructions prepare for a return to action.

It’s difficult to imagine how Mr Steven’s already vast net could plausibly be expanded by a factor of two in each dimension. I certainly can’t wait to see what that looks like! Fairing aboard, Mr Steven performed rapid turns and high-speed sprints with the fairing half aboard. (Pauline Acalin)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading