News
SpaceX just blew up a Starship tank on purpose and Elon Musk says the results are in
Before dawn on January 10th, SpaceX technicians and engineers intentionally blew up a miniature Starship tank in order to test recently-upgraded manufacturing and assembly methods, likely to be used to build the first Starships bound for flight tests and orbit.
SpaceX CEO Elon Musk quickly weighed in on Twitter later the same day, revealing some crucial details about the Starship tank test and effectively confirming that it was a success. While somewhat unintuitive, this is the second time SpaceX has intentionally destroyed largely completed Starship hardware in order to determine the limits of the company’s current methods of production and assembly.
Most notably, on November 20th, SpaceX is believed to have intentionally overpressurized the Starship Mk1 prototype in a very similar – albeit larger-scale – test, destroying the vehicle and sending its top tank dome flying hundreds of feet into the air. It’s generally believed that SpaceX (or perhaps even just Musk) decided that Starship Mk1 was not fit to fly, leading the company to switch gears and deem the prototype a “manufacturing pathfinder” rather than the first Starship to fly – which Musk had explicitly stated just a few months prior.
Bopper (Baby StarPopper) this morning after the overpressure event at SpaceX Boca Chica. ??@NASASpaceflight https://t.co/nCG7E9XtKM pic.twitter.com/PRTDQvvlRh— Mary (@BocaChicaGal) January 10, 2020
Dome to barrel weld made it to 7.1 bar, which is pretty good as ~6 bar is needed for orbital flight. With more precise parts & better welding conditions, we should reach ~8.5 bar, which is the 1.4 factor of safety needed for crewed flight.— Buff Mage (@elonmusk) January 10, 2020
Instead, Starship Mk1 suffered irreparable damage during its pressurization test and was rapidly scrapped in the weeks following, although several segments were thankfully salvaged – perhaps for use on future prototypes. Along those lines, it can arguably be said that the results from the mini Starship tank’s Jan. 10 pop test have paved the way for SpaceX to build the first truly flightworthy Starship prototypes – potentially all the way up to the first spaceworthy vehicles.
Hours after the test, Musk revealed that the Starship test tank failed almost exactly where and how SpaceX expected it would, bursting when the weld joining the upper dome and tank wall failed. Critically, the tank reached a maximum sustained pressure of 7.1 bar (103 psi), some 18% over the operating pressure (6 bar/87 psi) Musk says Starship prototypes will need to be declared fully capable of orbital test flights. In other words, given the tank’s size, it survived an incredible ~20,000 metric tons (45 million lbf) of force spread out over its surface area, equivalent to about 20% the weight of an entire US Navy aircraft carrier.
Musk also revealed that SpaceX will require Starships to survive a minimum of 140% of that operating pressure before the company will allow the spacecraft to launch humans.
Some have less than generously taken to smugly noting that several modern spaceflight and engineering standards require that launch vehicle tankage be rated to survive no less than 125% of their operating pressure, while this test tank would be rated for less than 118% under identical conditions. However, this ignores several significant points of interest. First and foremost, the Starship test tank intentionally destroyed on January 10th was assembled from almost nothing – going from first weld to a completed pressurization test – in less than three weeks (20 days).
Second, all visible welding and assembly work was performed outside in the South Texas elements with only a minor degree of protection from the coastal winds and environment. Although some obvious tweaks were made to the specific methods used to assembly the prototype tank, it also appears that most of the welding was done by hand. For the most part, in other words, the methods used to build this improved test article were largely unchanged compared to Starship Mk1, which is believed to have failed around 3-5 bar (40-75 psi).
Additionally, it appears that almost all aspects of this test tank have smaller structural margins, meaning that the tank walls and domes are likely using steel stock that is substantially thinner than what was used on Starship Mk1. Nevertheless, thanks to the addition of continuous (single-weld) steel rings, a tweaked dome layout, and slightly refined welding, this test tank has performed anywhere from 20% to 200+% better than Starship Mk1 – again, all while coming together from scratch in a period of less than three weeks.

As Musk notes, with relatively minor improvements to welding conditions and the manufacturing precision of Starship rings and domes, SpaceX can likely ensure that Starships (and thus Super Heavy boosters) will be able to survive pressures greater than 8.5 bar (125 psi), thus guaranteeing a safety margin of at least 40%. Even a minor improvement of ~6% would give vehicles a safety margin of 125%, enough – in the eyes of engineering standards committees – to reasonably certify Starships for orbital test flights.


All things considered, it’s safe to assume that SpaceX is going to begin building and assembling Starship SN01 (formerly Mk3) hardware almost immediately. Given that this test tank took just 20 days to assemble, it’s safe to say that the upgraded prototype’s tank section could be completed in just a handful of weeks. Stay tuned for progress reports.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla launches new Model 3 financing deal with awesome savings
Tesla is now offering a 0.99% APR financing option for all new Model 3 orders in the United States, and it applies to all loan terms of up to 72 months.
Tesla has launched a new Model 3 financing deal in the United States that brings awesome savings. The deal looks to move more of the company’s mass-market sedan as it is the second-most popular vehicle Tesla offers, behind its sibling, the Model Y.
Tesla is now offering a 0.99% APR financing option for all new Model 3 orders in the United States, and it applies to all loan terms of up to 72 months.
It includes three Model 3 configurations, including the Model 3 Performance. The rate applies to:
- Model 3 Premium Rear-Wheel-Drive
- Model 3 Premium All-Wheel-Drive
- Model 3 Performance
The previous APR offer was 2.99%.
NEWS: Tesla has introduced 0.99% APR financing for all new Model 3 orders in the U.S. (applies to loan terms of up to 72 months).
This includes:
• Model 3 RWD
• Model 3 Premium RWD
• Model 3 Premium AWD
• Model 3 PerformanceTesla was previously offering 2.99% APR. pic.twitter.com/A1ZS25C9gM
— Sawyer Merritt (@SawyerMerritt) February 15, 2026
Tesla routinely utilizes low-interest offers to help move vehicles, especially as the rates can help get people to payments that are more comfortable with their monthly budgets. Along with other savings, like those on maintenance and gas, this is another way Tesla pushes savings to customers.
The company had offered a similar program in China on the Model 3 and Model Y vehicles, but it had ended on January 31.
The Model 3 was the second-best-selling electric vehicle in the United States in 2025, trailing only the Model Y. According to automotive data provided by Cox, Tesla sold 192,440 units last year of the all-electric sedan. The Model Y sold 357,528 units.
News
Tesla hasn’t adopted Apple CarPlay yet for this shocking reason
Many Apple and iPhone users have wanted the addition, especially to utilize third-party Navigation apps like Waze, which is a popular alternative. Getting apps outside of Tesla’s Navigation to work with its Full Self-Driving suite seems to be a potential issue the company will have to work through as well.
Perhaps one of the most requested features for Tesla vehicles by owners is the addition of Apple CarPlay. It sounds like the company wants to bring the popular UI to its cars, but there are a few bottlenecks preventing it from doing so.
The biggest reason why CarPlay has not made its way to Teslas yet might shock you.
According to Bloomberg‘s Mark Gurman, Tesla is still working on bringing CarPlay to its vehicles. There are two primary reasons why Tesla has not done it quite yet: App compatibility issues and, most importantly, there are incredibly low adoption rates of iOS 26.
Tesla’s Apple CarPlay ambitions are not dead, they’re still in the works
iOS 26 is Apple’s most recent software version, which was released back in September 2025. It introduced a major redesign to the overall operating system, especially its aesthetic, with the rollout of “Liquid Glass.”
However, despite the many changes and updates, Apple users have not been too keen on the iOS 26 update, and the low adoption rates have been a major sticking point for Tesla as it looks to develop a potential alternative for its in-house UI.
It was first rumored that Tesla was planning to bring CarPlay out in its cars late last year. Many Apple and iPhone users have wanted the addition, especially to utilize third-party Navigation apps like Waze, which is a popular alternative. Getting apps outside of Tesla’s Navigation to work with its Full Self-Driving suite seems to be a potential issue the company will have to work through as well.
According to the report, Tesla asked Apple to make some changes to improve compatibility between its software and Apple Maps:
“Tesla asked Apple to make engineering changes to Maps to improve compatibility. The iPhone maker agreed and implemented the adjustments in a bug fix update to iOS 26 and the latest version of CarPlay.”
Gurman also said that there were some issues with turn-by-turn guidance from Tesla’s maps app, and it did not properly sync up with Apple Maps during FSD operation. This is something that needs to be resolved before it is rolled out.
There is no listed launch date, nor has there been any coding revealed that would indicate Apple CarPlay is close to being launched within Tesla vehicles.
Elon Musk
Starlink restrictions are hitting Russian battlefield comms: report
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network.
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.
Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.
A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.
The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.
The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted.