News
SpaceX, Boeing astronaut spacecraft working towards orbital meet-up in 2020
According to Boeing’s new Starliner testing plan, the spacecraft could potentially meet SpaceX’s own Crew Dragon astronaut spacecraft in orbit at the International Space Station (ISS) later this year.
Following Starliner’s near-catastrophic December 2019 orbital flight test (OFT), Boeing and NASA have finally announced that – at a minimum – a second uncrewed flight test will have to be completed before the company will be allowed to launch astronauts. According to the Washington Post, Starliner’s return to flight is expected to occur no earlier than October or November 2020, 10 or 11 months after it suffered several major software failures during its first spaceflight. While delays to that flight schedule are incredibly likely, it does mean that there’s a chance that SpaceX’s second crewed Crew Dragon launch could coincide with Starliner’s second orbital mission — a first for the two NASA Commercial Crew Program (CCP) providers.
Just one week before NASA and Boeing revealed plans to refly Starliner’s uncrewed flight test, NASA announced that SpaceX’s first operational Crew Dragon launch now has a full four astronauts assigned to it. Scheduled to launch no earlier than Q4 2020, the spacecraft will carry three NASA astronauts and one Japanese (JAXA) astronaut to the ISS, remaining in orbit for at least six months before returning its crew back to Earth. Now, there’s a chance that SpaceX’s first operational Crew Dragon will be joined in orbit by Boeing’s Starliner spacecraft sometime soon after arriving on station.


As previously discussed on Teslarati, Boeing’s Starliner OFT suffered several near-catastrophic close calls in the few days it spent in space, all of which appear to have egregiously shoddy and unqualified software to blame.
“Starliner launched atop a ULA Atlas V rocket on its orbital launch debut (OFT) on December 20th, 2019. Atlas V performed flawlessly but immediately after Starliner separated from the rocket, things went very wrong.
Bad software ultimately caused the spacecraft to perform thousands of uncommanded maneuvering thruster burns, depleting a majority of its propellant before Boeing was able to intervene. Starliner managed to place itself in low Earth orbit (LEO), but by then it had nowhere near enough propellant left to rendezvous and dock with the ISS – one of the most crucial purposes of the flight test. Unable to complete that part of the mission, Boeing instead did a few small tests over the course of 48 hours in orbit before commanding the spacecraft’s reentry and landing on December 22nd.
The Starliner spacecraft also reportedly almost suffered a second major software failure just hours before reentry. According to NASA and Boeing comments in a press conference held only after news of that second failure broke, a second Starliner software bug – caught only because the first failure forced Boeing to double-check its code – could have had far more catastrophic consequences. NASA stated that had the second bug not been caught, some of Starliner’s thruster valves would have been frozen, either entirely preventing or severely hampering the spacecraft’s detached trunk from properly maneuvering in orbit. Apparently, that service module (carrying fuel, abort engines, a solar array, and more) could have crashed into the crew module shortly after detaching.”
Teslarati.com — February 11th, 2020
The only sane response was obviously for NASA to require Boeing to successfully complete a second Orbital Flight Test (OFT), a necessary decision the space agency and card-holder was bizarrely hesitant to acknowledge. Now, almost four months after Starliner was nearly lost on its first orbital flight test, NASA and Boeing have finally stated the obvious and confirmed that a second OFT will be required before astronauts can fly on Starliner. Even then, if things go wrong during OFT2 or Boeing completes the mission but still fails to rectify all faults identified by a joint failure investigation, NASA may still delay the spacecraft’s astronaut launch debut.

SpaceX has undeniably had its own stumbles while developing Crew Dragon, most notably when the first successfully flight-proven spacecraft violently exploded moments before a static fire test in April 2019. SpaceX was able to rectify the responsible design flaws and successfully complete an identical static fire test less than seven months later, followed by a second successful launch less than three months after that. Based on WaPo’s indication that Starliner’s second OFT is scheduled for Q4 2020, Boeing is now anywhere from 12-18 months behind SpaceX with its efforts to launch NASA astronauts to and from the space station. SpaceX successfully completed Crew Dragon’s OFT equivalent in March 2019.
Regardless, if Crew Dragon performs flawlessly during its Demo-2 astronaut launch debut – scheduled no earlier than mid-to-late May – and Boeing’s Starliner OFT2 mission launches on time in Q4 2020, there is a great chance that both spacecraft will be simultaneously docked to the space station. Better circumstances would be unequivocally preferable but it will still mark an important symbolic milestone for NASA’s Commercial Crew Program (CCP) and assured access to the ISS.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.