News
SpaceX Starlink launch to smash California pad turnaround record
Update: SpaceX’s Thursday Starlink 3-2 launch was automatically aborted less than a minute before liftoff by Falcon 9’s onboard computers. The company will try again tomorrow, Friday, July 22nd, at 10:39 pm PDT (17:39 UTC).
SpaceX says it’s on track to launch another batch of polar Starlink satellites from the West Coast as early as 10:39 am PDT (17:39 UTC), Thursday, July 21st.
On top of featuring one of the fastest Falcon 9 booster turnarounds ever, SpaceX’s Starlink 3-2 launch will more than halve the fastest turnaround of its Vandenberg Space Force Base (VSFB) SLC-4E pad, potentially rendering it capable of launching dozens of times per year.
Barring delays, Starlink 3-2 is scheduled to launch from SLC-4E just 10 days and 14 hours after the same pad supported Starlink 3-1. The current record – 22 days and 11 hours – was set between the launches of Germany’s SARah-1 radar satellite and Starlink 3-1, meaning that SLC-4E is on track to break its turnaround record twice in a row.
For most of the time since SpaceX began using SLC-4E for Falcon 9 launches in 2013, the pad has rarely supported more than one launch every few months. Between 2013 and 2020, the pad supported a total of 16 successful Falcon 9 launches. 15 occurred between January 2016 and November 2020, averaging one launch every four months and never flying twice in less than 36 days. Between January 2019 and September 2021, the pad only supported three launches and even went 17 months without a single use.

In late 2021, something changed. On top of the introduction of dedicated West Coast Starlink launches, apparent upgrades to the pad’s turnaround capabilities have allowed it to support more launches than usual. In the ten months since SLC-4E exited its hibernation period, it’s supported nine Falcon 9 launches – five for Starlink and four for customers. Prior to 2021, SLC-4E never supported more than six launches in a ten-month period, meaning that the pad is already operating at a 50% higher capacity.
SpaceX, however, apparently wasn’t satisfied and is on track to substantially expand SLC-4’s operational constraints yet again, more than halving its minimum demonstrated turnaround time. By definition, that also doubles the pad’s operational ceiling, meaning that it could theoretically support about 34 launches per year with no downtime. SpaceX appears to have achieved that expansion by applying the same upgrades it already made to its two East Coast launch pads, LC-39A and LC-40, which both set respective turnaround records of approximately nine days and eight days earlier this year. SLC-4E will comfortably bookend the two with its imminent 10.7-day turnaround.
Of course, no launch pad routinely operates at its demonstrated minimum, but a leap forward like SLC-4E’s (22.5 to 10.7 days) all but guarantees that the pad will be able to launch far more frequently as long as rockets and payloads are available. Over the last seven months, LC-39A has averaged one launch every 19 days – more than twice its 9.1-day turnaround record. LC-40, which generally deals with simpler missions and only one of three Falcon rocket variants, has managed one launch every 13 days over the same period – closer to its 8.2-day record but still a ways off.

Even if SLC-4E’s average cadence settles somewhere between SpaceX’s other two pads going forward, it will still likely double its contribution the company’s annual launch cadence and help expedite the deployment of its Starlink internet constellation. If all three pads manage an average of about one launch every two weeks, a target that’s well within reach, SpaceX will have the capacity to launch 72 Falcon rockets per year – more than any other family of rockets in history.
Pad aside, Starlink 3-2 will be Falcon 9 booster B1071’s fourth launch overall and second launch in 33 days – SoaceX’s fifth fastest Falcon booster reuse since the practice began in March 2017. Tune in below around 10:30 am PDT (17:30 UTC) to watch Falcon 9’s 32nd launch of 2022.
Elon Musk
Tesla owners surpass 8 billion miles driven on FSD Supervised
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account.
Tesla shared the milestone as adoption of the system accelerates across several markets.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.