News
SpaceX Starlink launch to smash California pad turnaround record
Update: SpaceX’s Thursday Starlink 3-2 launch was automatically aborted less than a minute before liftoff by Falcon 9’s onboard computers. The company will try again tomorrow, Friday, July 22nd, at 10:39 pm PDT (17:39 UTC).
SpaceX says it’s on track to launch another batch of polar Starlink satellites from the West Coast as early as 10:39 am PDT (17:39 UTC), Thursday, July 21st.
On top of featuring one of the fastest Falcon 9 booster turnarounds ever, SpaceX’s Starlink 3-2 launch will more than halve the fastest turnaround of its Vandenberg Space Force Base (VSFB) SLC-4E pad, potentially rendering it capable of launching dozens of times per year.
Barring delays, Starlink 3-2 is scheduled to launch from SLC-4E just 10 days and 14 hours after the same pad supported Starlink 3-1. The current record – 22 days and 11 hours – was set between the launches of Germany’s SARah-1 radar satellite and Starlink 3-1, meaning that SLC-4E is on track to break its turnaround record twice in a row.
For most of the time since SpaceX began using SLC-4E for Falcon 9 launches in 2013, the pad has rarely supported more than one launch every few months. Between 2013 and 2020, the pad supported a total of 16 successful Falcon 9 launches. 15 occurred between January 2016 and November 2020, averaging one launch every four months and never flying twice in less than 36 days. Between January 2019 and September 2021, the pad only supported three launches and even went 17 months without a single use.

In late 2021, something changed. On top of the introduction of dedicated West Coast Starlink launches, apparent upgrades to the pad’s turnaround capabilities have allowed it to support more launches than usual. In the ten months since SLC-4E exited its hibernation period, it’s supported nine Falcon 9 launches – five for Starlink and four for customers. Prior to 2021, SLC-4E never supported more than six launches in a ten-month period, meaning that the pad is already operating at a 50% higher capacity.
SpaceX, however, apparently wasn’t satisfied and is on track to substantially expand SLC-4’s operational constraints yet again, more than halving its minimum demonstrated turnaround time. By definition, that also doubles the pad’s operational ceiling, meaning that it could theoretically support about 34 launches per year with no downtime. SpaceX appears to have achieved that expansion by applying the same upgrades it already made to its two East Coast launch pads, LC-39A and LC-40, which both set respective turnaround records of approximately nine days and eight days earlier this year. SLC-4E will comfortably bookend the two with its imminent 10.7-day turnaround.
Of course, no launch pad routinely operates at its demonstrated minimum, but a leap forward like SLC-4E’s (22.5 to 10.7 days) all but guarantees that the pad will be able to launch far more frequently as long as rockets and payloads are available. Over the last seven months, LC-39A has averaged one launch every 19 days – more than twice its 9.1-day turnaround record. LC-40, which generally deals with simpler missions and only one of three Falcon rocket variants, has managed one launch every 13 days over the same period – closer to its 8.2-day record but still a ways off.

Even if SLC-4E’s average cadence settles somewhere between SpaceX’s other two pads going forward, it will still likely double its contribution the company’s annual launch cadence and help expedite the deployment of its Starlink internet constellation. If all three pads manage an average of about one launch every two weeks, a target that’s well within reach, SpaceX will have the capacity to launch 72 Falcon rockets per year – more than any other family of rockets in history.
Pad aside, Starlink 3-2 will be Falcon 9 booster B1071’s fourth launch overall and second launch in 33 days – SoaceX’s fifth fastest Falcon booster reuse since the practice began in March 2017. Tune in below around 10:30 am PDT (17:30 UTC) to watch Falcon 9’s 32nd launch of 2022.
News
Tesla leases new 108k-sq ft R&D facility near Fremont Factory
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay.
The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.
A new Fremont lease
Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.
As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.
Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.
AI investments
Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.
Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.
Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.