News
SpaceX Starlink launch to smash California pad turnaround record
Update: SpaceX’s Thursday Starlink 3-2 launch was automatically aborted less than a minute before liftoff by Falcon 9’s onboard computers. The company will try again tomorrow, Friday, July 22nd, at 10:39 pm PDT (17:39 UTC).
SpaceX says it’s on track to launch another batch of polar Starlink satellites from the West Coast as early as 10:39 am PDT (17:39 UTC), Thursday, July 21st.
On top of featuring one of the fastest Falcon 9 booster turnarounds ever, SpaceX’s Starlink 3-2 launch will more than halve the fastest turnaround of its Vandenberg Space Force Base (VSFB) SLC-4E pad, potentially rendering it capable of launching dozens of times per year.
Barring delays, Starlink 3-2 is scheduled to launch from SLC-4E just 10 days and 14 hours after the same pad supported Starlink 3-1. The current record – 22 days and 11 hours – was set between the launches of Germany’s SARah-1 radar satellite and Starlink 3-1, meaning that SLC-4E is on track to break its turnaround record twice in a row.
For most of the time since SpaceX began using SLC-4E for Falcon 9 launches in 2013, the pad has rarely supported more than one launch every few months. Between 2013 and 2020, the pad supported a total of 16 successful Falcon 9 launches. 15 occurred between January 2016 and November 2020, averaging one launch every four months and never flying twice in less than 36 days. Between January 2019 and September 2021, the pad only supported three launches and even went 17 months without a single use.

In late 2021, something changed. On top of the introduction of dedicated West Coast Starlink launches, apparent upgrades to the pad’s turnaround capabilities have allowed it to support more launches than usual. In the ten months since SLC-4E exited its hibernation period, it’s supported nine Falcon 9 launches – five for Starlink and four for customers. Prior to 2021, SLC-4E never supported more than six launches in a ten-month period, meaning that the pad is already operating at a 50% higher capacity.
SpaceX, however, apparently wasn’t satisfied and is on track to substantially expand SLC-4’s operational constraints yet again, more than halving its minimum demonstrated turnaround time. By definition, that also doubles the pad’s operational ceiling, meaning that it could theoretically support about 34 launches per year with no downtime. SpaceX appears to have achieved that expansion by applying the same upgrades it already made to its two East Coast launch pads, LC-39A and LC-40, which both set respective turnaround records of approximately nine days and eight days earlier this year. SLC-4E will comfortably bookend the two with its imminent 10.7-day turnaround.
Of course, no launch pad routinely operates at its demonstrated minimum, but a leap forward like SLC-4E’s (22.5 to 10.7 days) all but guarantees that the pad will be able to launch far more frequently as long as rockets and payloads are available. Over the last seven months, LC-39A has averaged one launch every 19 days – more than twice its 9.1-day turnaround record. LC-40, which generally deals with simpler missions and only one of three Falcon rocket variants, has managed one launch every 13 days over the same period – closer to its 8.2-day record but still a ways off.

Even if SLC-4E’s average cadence settles somewhere between SpaceX’s other two pads going forward, it will still likely double its contribution the company’s annual launch cadence and help expedite the deployment of its Starlink internet constellation. If all three pads manage an average of about one launch every two weeks, a target that’s well within reach, SpaceX will have the capacity to launch 72 Falcon rockets per year – more than any other family of rockets in history.
Pad aside, Starlink 3-2 will be Falcon 9 booster B1071’s fourth launch overall and second launch in 33 days – SoaceX’s fifth fastest Falcon booster reuse since the practice began in March 2017. Tune in below around 10:30 am PDT (17:30 UTC) to watch Falcon 9’s 32nd launch of 2022.
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.