News
SpaceX recovery ships head to sea for first 'whole-fairing' catch attempt
After a brisk day-long cruise into the Atlantic Ocean, SpaceX’s twin Falcon fairing recovery ships have reached the general landing area to prepare for their first true ‘whole-fairing’ catch attempt.
Formerly known as Mr. Steven, GO Ms. Tree and new sister ship GO Ms. Chief departed Port Canaveral on December 14th and arrived at their designated recovery roughly 36 hours later. Now stationed just shy of 800 km (500 mi) downrange of SpaceX’s LC-40 Cape Canaveral Air Force Station (CCAFS) launch site, the ships are in position and can begin to prepare for Falcon 9’s Kacific-1/JCSAT-18 launch.
Scheduled to lift off no earlier than (NET) 7:10 pm ET, December 16th (00:10 UTC, Dec 17), Falcon 9 will place the ~6800 kg (15,000 lb) Kacific-1/JCSAT-18 communications satellite in a geostationary transfer orbit (GTO). Falcon 9 booster B1056 will attempt its third landing around nine minutes after launch, to be followed 25 minutes later by satellite deployment from the rocket’s upper stage. deploying the satellite around thirty minutes after launch.
If all goes according to plan, another 12-15 minutes after Falcon 9’s second stage (S2) deploys the Kacific-1/JCSAT-18 satellite, the rocket’s payload fairing halves will begin their final approach towards recovery ships Ms. Tree and Ms. Chief. Just shy of identical twins, the two ships have been outfitted with custom arms, boom supports, and nets with the intention of quite literally catching payload fairing halves out of the air after orbital Falcon 9 (and Heavy) launches.
SpaceX’s fairing recovery development program has had a long and arduous journey from Mr. Steven’s (now Ms. Tree’s) arrival at the company’s Port of Los Angeles dock space (late-2017) to the ship’s first attempted fairing catch (February 2018) and first successful catch (June 2019). In the 20+ months SpaceX has been attempting fairing recoveries, at least a dozen intentional soft ocean landings and seven net catches have been attempted, with numerous successful splashdowns and recoveries ultimately followed by two consecutive catches in June and August 2019.


The fact that SpaceX consecutively caught two fairing halves a little over two months apart after five failed catch attempts suggests that the company has effectively solved the majority of the fairing recovery challenge, becoming the first company (or space agency) in the world to do so. Unfortunately, a three-month launch lull after the second successful catch precluded any rapid-fire follow-up attempts and when that lull came to an end on November 11th, Ms. Tree and Ms. Chief were both ready but were forced to abort the attempt by rough seas.
Both ships actually spent several weeks docked (or stranded) in a North Carolina port after that aborted mission, potentially indicating that SpaceX had to fly a team north to inspect both ships’ arms and ensure that they could make the journey back to Port Canaveral. They were ultimately cleared and returned to their home port around ten days later, where their arms and booms were immediately removed. It’s unclear why that removal occurred but SpaceX’s recovery team rapidly reinstalled their arms in just a few days, followed by their nets soon after.
Given that their first simultaneous (i.e. ‘whole-fairing’) catch attempt was aborted before it could start, it’s safe to say that December 16th’s hopeful attempt will be Ms. Tree’s and Ms. Chief’s first side-by-side recovery mission. Both ships have successfully reached the recovery zone, a step further than they managed to get on their November attempt. Coincidentally, that November launch happened to mark both SpaceX’s and the world’s first launch of a flight-proven payload fairing, both halves of which were recovered from the ocean and represented a more or less worst-case scenario for reuse.
And nevertheless, that reuse was a flawless success, marred only by the fact that Ms. Tree and Ms. Chief were unable to attempt to recover the world’s first twice-flown payload fairing. In short, all the conditions are right for what could be the world’s first successful recovery of both halves of an orbital-class payload fairing. If successful, SpaceX will have effectively closed the book on Falcon 9 and Heavy reusability development, having proven that both boosters and fairings can be reliably and routinely recovered and reused.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.