Connect with us

News

SpaceX recovery ships head to sea for first 'whole-fairing' catch attempt

One of the first views of twin SpaceX fairing recovery ships Ms. Tree & Ms. Chief. After an aborted November trial, the ships are now officially in place for their first simultaneous catch attempt. (Greg Scott)

Published

on

After a brisk day-long cruise into the Atlantic Ocean, SpaceX’s twin Falcon fairing recovery ships have reached the general landing area to prepare for their first true ‘whole-fairing’ catch attempt.

Formerly known as Mr. Steven, GO Ms. Tree and new sister ship GO Ms. Chief departed Port Canaveral on December 14th and arrived at their designated recovery roughly 36 hours later. Now stationed just shy of 800 km (500 mi) downrange of SpaceX’s LC-40 Cape Canaveral Air Force Station (CCAFS) launch site, the ships are in position and can begin to prepare for Falcon 9’s Kacific-1/JCSAT-18 launch.

Scheduled to lift off no earlier than (NET) 7:10 pm ET, December 16th (00:10 UTC, Dec 17), Falcon 9 will place the ~6800 kg (15,000 lb) Kacific-1/JCSAT-18 communications satellite in a geostationary transfer orbit (GTO). Falcon 9 booster B1056 will attempt its third landing around nine minutes after launch, to be followed 25 minutes later by satellite deployment from the rocket’s upper stage. deploying the satellite around thirty minutes after launch.

If all goes according to plan, another 12-15 minutes after Falcon 9’s second stage (S2) deploys the Kacific-1/JCSAT-18 satellite, the rocket’s payload fairing halves will begin their final approach towards recovery ships Ms. Tree and Ms. Chief. Just shy of identical twins, the two ships have been outfitted with custom arms, boom supports, and nets with the intention of quite literally catching payload fairing halves out of the air after orbital Falcon 9 (and Heavy) launches.

SpaceX’s fairing recovery development program has had a long and arduous journey from Mr. Steven’s (now Ms. Tree’s) arrival at the company’s Port of Los Angeles dock space (late-2017) to the ship’s first attempted fairing catch (February 2018) and first successful catch (June 2019). In the 20+ months SpaceX has been attempting fairing recoveries, at least a dozen intentional soft ocean landings and seven net catches have been attempted, with numerous successful splashdowns and recoveries ultimately followed by two consecutive catches in June and August 2019.

Advertisement
Ms. Tree’s second successful fairing catch occurred on August 6th, some 45 minutes after Falcon 9 lifted off with the AMOS-17 communications satellite. (SpaceX)
Fairing catcher GO Ms. Chief – the latest addition to SpaceX’s rocket recovery fleet – departed Port Canaveral for sea trials on October 23rd. (Richard Angle – Teslarati)

The fact that SpaceX consecutively caught two fairing halves a little over two months apart after five failed catch attempts suggests that the company has effectively solved the majority of the fairing recovery challenge, becoming the first company (or space agency) in the world to do so. Unfortunately, a three-month launch lull after the second successful catch precluded any rapid-fire follow-up attempts and when that lull came to an end on November 11th, Ms. Tree and Ms. Chief were both ready but were forced to abort the attempt by rough seas.

Both ships actually spent several weeks docked (or stranded) in a North Carolina port after that aborted mission, potentially indicating that SpaceX had to fly a team north to inspect both ships’ arms and ensure that they could make the journey back to Port Canaveral. They were ultimately cleared and returned to their home port around ten days later, where their arms and booms were immediately removed. It’s unclear why that removal occurred but SpaceX’s recovery team rapidly reinstalled their arms in just a few days, followed by their nets soon after.

Given that their first simultaneous (i.e. ‘whole-fairing’) catch attempt was aborted before it could start, it’s safe to say that December 16th’s hopeful attempt will be Ms. Tree’s and Ms. Chief’s first side-by-side recovery mission. Both ships have successfully reached the recovery zone, a step further than they managed to get on their November attempt. Coincidentally, that November launch happened to mark both SpaceX’s and the world’s first launch of a flight-proven payload fairing, both halves of which were recovered from the ocean and represented a more or less worst-case scenario for reuse.

And nevertheless, that reuse was a flawless success, marred only by the fact that Ms. Tree and Ms. Chief were unable to attempt to recover the world’s first twice-flown payload fairing. In short, all the conditions are right for what could be the world’s first successful recovery of both halves of an orbital-class payload fairing. If successful, SpaceX will have effectively closed the book on Falcon 9 and Heavy reusability development, having proven that both boosters and fairings can be reliably and routinely recovered and reused.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla makes a massive change to a Service policy that owners will love

If you have a subscription to Full Self-Driving or Premium Connectivity for 30 days, the date of its expiration is 30 days after you activate the subscription, even if the vehicle was in service.

Published

on

Credit: Tesla

Tesla has decided to update its policy on Subscriptions and Service, and owners are going to love it.

If you have a subscription to Full Self-Driving or Premium Connectivity for 30 days, the date of its expiration is 30 days after you activate the subscription, even if the vehicle was in service.

So, if your car was with Tesla Service for five days, you essentially lost those five days, as your expiration date was not adjusted to reflect the time the vehicle was unusable.

Loaners that Tesla gives owners are usually equipped with perks like Full Self-Driving and Premium Connectivity, so your subscription does not roll over to another vehicle.

Tesla launches new loaner program that owners will love

However, Tesla has decided to revise that policy in an effort to give owners full access to the subscriptions they paid for. It requires Service visits to be longer than one day.

In a communication to an owner who was having their vehicle serviced, Tesla said:

“A loaner vehicle may be available during your appointment (pending availability) – please check the app closer to your appointment for the latest updates and access details. If your repair requires more than one business day, any active subscriptions or free trials will be extended accordingly.”

The move is a good one from a customer service standpoint, especially considering the loss of even a few days of a 30-day subscription to something like Full Self-Driving, which costs $99 per month, can be frustrating.

Tesla’s choice to extend the subscription duration for the length of the service visit is a good-faith move that customers will appreciate.

While this adjustment is not directly related to Service, many customers will relate it to that. It’s yet another move Tesla has made in 2025 to make its Service experience better for customers.

It is also offering more options to communicate with Service advisors during and after cars are repaired, which can help streamline the entire visit from start to finish.

Continue Reading

News

SpaceX reaches incredible Starlink milestone

Published

on

Credit: SpaceX

SpaceX has reached an incredible milestone with its Starlink program, officially surpassing 10,000 satellites launched into low Earth orbit since starting the program back in 2019.

Last Sunday, October 19, SpaceX launched its 131st and 132nd Falcon 9 missions of 2025, one from Cape Canaveral, Florida, and the other from Vandenberg, California.

The 10,000th Starlink satellite was aboard the launch from California, which was Starlink 11-19, and held 28 v2 mini optimized satellites.

The achievement was marked by a satellite tracker developed by Jonathan McDowell.

The first Starlink launch was all the way back on May 23, 2019, as SpaceX launched its first 60 satellites from Cape Canaveral using a Falcon 9 rocket.

Of the over 10,000 satellites in orbit, the tracker says 8,608 are operational, as some are intentionally de-orbited after becoming faulty and destroyed in the atmosphere.

SpaceX has truly done some really incredible things during its development of the Starlink program, including launch coverage in a global setting, bringing along millions of active subscribers that use the service for personal and business use, locking up commercial partnerships, and more.

Starlink currently operates in around 150 countries, territories, and markets and is available at least somewhere on all seven continents.

Additionally, Starlink has over 5 million subscribers worldwide, and 2.7 million have joined the program over the past year. It has revolutionized internet access on commercial aircraft as well, as several high-profile airlines like Qatar and United, among many others, have already installed Starlink on some of their planes to deliver more stable connectivity for passengers and crew.

SpaceX has the approval to launch 12,000 Starlink satellites from the FAA, but it plans to bring over 30,000 to its constellation, giving anyone the ability to have access to high-speed internet.

Continue Reading

News

Tesla Full Self-Driving’s biggest improvements from v13 to v14

Published

on

Credit: Tesla

Tesla Full Self-Driving (Supervised) v14 has been out for several weeks now, and there are a tremendous number of improvements, as we have now reached the fourth iteration of the semi-autonomous software.

Tesla began the v14.1.4 launch last night, which included minor improvements and addressed brake-stabbing issues many owners have reported. In my personal experience, the stabbing has been awful on v14.1.3, and is a major concern.

However, many things have improved, and only a couple of minor issues have been recurring. Many of the issues v13 addressed are no longer an issue, so Tesla has made significant progress.

Here are some of the most notable improvements Tesla made with v14 from v13:

Better Lane Switching on Highways

One of my biggest complaints with v13 was that the “Hurry” Speed Profile would often stay in the left lane, even when there were no passing cars. The legality of cruising in the left lane fluctuates by jurisdiction, but my personal preference is to drive in the right lane and pass on the left.

That said, Tesla has improved FSD’s performance with more courteous lane behavior. It no longer camps in the left lane and routinely gets back in the right lane after passing slower cars.

More Awareness for Merging Traffic and Makes Courteous Moves

There have been times when FSD has been more aware of merging traffic, and even cross traffic, than most human beings.

Here are a few examples –

  • Full Self-Driving lets a car out of cross traffic during a busy time of day. This road tends to get very congested, especially during rush hour, so the car that was let in by FSD would have been sitting there for likely a minute longer if my Tesla had not let him in:

  • A busy, four-lane expressway with a quick exit on the far side of the highway for this merging vehicle. I’ve seen some drivers be extremely inattentive and travel at the same speed as merging cars, making their entry onto the expressway less seamless. FSD doesn’t do that; it makes way for merging cars:

More Confident Driving Around Mail Trucks…and Amish

I encounter a lot of Amish in my area of Pennsylvania, and they commonly use both shoulders and the road, so traffic can get congested at times.

In the past, I’ve taken over when encountering Amish buggies, mail trucks, or other vehicles that are moving slowly or making frequent stops. I have felt it is more logical to just take over in these situations.

I decided not to yesterday on a long drive through Lancaster, PA, and the FSD did a wonderful job of confidently overtaking these vehicles:

This was really impressive and fun to see. There was a slight stutter during one of the three instances, but overall, I didn’t have any concerns.

Object Avoidance

On v13, I almost let the car drive into a fallen branch in the middle of the road. A mile later, the car swerved out of the way for horse droppings. It was a beautiful, clear morning, and the fact that the car did not try to avoid the branch, but did steer away from poop, was concerning.

Tesla has obviously done a great job at refining FSD’s ability to navigate around these road hazards. Last night, it swerved around a dead animal carcass in the middle of the highway. I didn’t see it until we were already going around it:

It was awesome to see this and never feel alarmed by the sharp movement. The maneuver was smooth and really well done.

Better Speed Consistency

With v13, I felt I had to constantly adjust the Speed Profile, as well as the Max Speed setting, when using FSD. With V14, I don’t feel like I am making as many adjustments.

Tesla axed the Max Speed setting altogether with v14, which was a good move, in my opinion. Choosing the Speed Profile is now more intuitive by using the right scroll wheel. If the car is traveling too fast or too slow, just change the profile.

Three things Tesla needs to improve with Full Self-Driving v14 release

V13 had some issues with local roads, and I felt it would travel at strange speeds. In a 45 MPH zone, it would sometimes take a long time to reach 40 MPH, then hover between 43 MPH and 47 MPH. It would then fluctuate between those two speeds, frustrating drivers behind me, understandably.

V14 gets up to speed much better and travels at speeds I’m much more comfortable with on both local roads and highways.

Continue Reading

Trending