News
SpaceX shifts Falcon 9 booster from landing pad to drone ship after anomaly
SpaceX officially confirmed that it will move the location of a Falcon 9 booster’s post-launch recovery in order to better preserve the site of Crew Dragon’s catastrophic April 20th failure.
Instead of returning the booster to one of SpaceX’s two Cape Canaveral Landing Zones (LZs), SpaceX has applied for an FCC permit to land the rocket less than 20 miles (~30 km) off the coast of Florida on the drone ship Of Course I Still Love You (OCISLY). The culprit for the last-second change of plans is a catastrophic failure of Crew Dragon that spread debris throughout SpaceX’s Landing Zone facilities, debris that will now be critical for the process of anomaly resolution. Landing a Falcon 9 booster at LZ-1 or 2 would invariably spread Crew Dragon’s debris and complicate the failure investigation even further.
Much like a tornado passing through a crime scene would likely hamper the value of that crime scene and any related investigations, a Falcon 9 booster landing at the scene of a fresh accident investigation would be an extremely unwelcome complication. Even with just one Merlin 1D engine firing during a Falcon 9’s landing burn, the engine exhaust departs the nozzle traveling approximately 2.7 km/s (1.7 mi/s) and could easily send Crew Dragon remnants hundreds or even thousands of feet away and incinerate smaller debris. Given that Crew Dragon’s explosion appears to have been highly energetic, many, many pieces will already be spread many hundreds – and perhaps thousands – of feet around the incident.
Crew Dragon is an extremely complex spacecraft. Even the tiniest of fragments could potentially be critical to the successful completion of the explosion investigation, especially if the fault began somewhere in capsule C201’s many hundreds of feet of plumbing. The pipes, valves, and pumps that make up Crew Dragon’s propellant management system have many hundreds (if not thousands) of small parts that must work without issue to safely pressurize and handle the spacecraft’s hypergolic propellant.


Cargo Dragon set for launch
Despite Crew Dragon’s serious failure and the need to change Falcon 9’s booster recovery plans at the last moment, SpaceX still appears to be working to maintain the planned launch date. The instantaneous window is set for 4:22 am ET (08:22 UTC), April 30th, delayed five days from the original April 25th target. Based on an update provided by NASA last week, those delays are the result of International Space Station (ISS) scheduling and additional time needed for payload preparations. Orbital-ATK’s (now “Northrop Grumman Innovation Systems” or NGIS) uncrewed Cygnus spacecraft successfully berthed with the ISS on April 19th, followed by the station’s astronauts unloading the three metric tons of cargo it contained over the next several days.
Once Cygnus operations have been completed, the ISS astronauts will be able to start preparing for Cargo Dragon’s CRS-17 resupply mission, likely carrying another three or four metric tons of pressurized cargo. Although the logistics of unloading, unpacking, and stowing the contents of hundreds of packages of consumables, hardware, tools, science experiments, and more is not exactly thrilling, the reality is that the task takes a surprising amount of time and care. Of the maximum six astronauts aboard the ISS at any given moment, only a few of them are able to focus exclusively on the cargo logistics at the same time as time-sensitive science experiments must be immediately set up to avoid ruining the data produced. Furthermore, although the ISS is truly massive, there are only a handful of berthing and docking ports and the actual habitable volume can be cramped, as are the ports between the station and visiting spacecraft.
An unknown Falcon 9 booster – perhaps B1056 – will perform a routine static fire test at SpaceX Launch Complex 40 (LC-40) five or so days before launch, likely within the next 48 hours. Soon after, Falcon 9 will be mated with CRS-17’s flight-proven Cargo Dragon capsule and expendable trunk before rolling back out to LC-40. If the FCC works fast and grants SpaceX’s updated booster recovery license in the next few days, CRS-17 should remain on track for an April 30th launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla AI Head says future FSD feature has already partially shipped
Tesla’s Head of AI, Ashok Elluswamy, says that something that was expected with version 14.3 of the company’s Full Self-Driving platform has already partially shipped with the current build of version 14.2.
Tesla and CEO Elon Musk have teased on several occasions that reasoning will be a big piece of future Full Self-Driving builds, helping bring forth the “sentient” narrative that the company has pushed for these more advanced FSD versions.
Back in October on the Q3 Earnings Call, Musk said:
“With reasoning, it’s literally going to think about which parking spot to pick. It’ll drop you off at the entrance of the store, then go find a parking spot. It’s going to spot empty spots much better than a human. It’s going to use reasoning to solve things.”
Musk said in the same month:
“By v14.3, your car will feel like it is sentient.”
Amazingly, Tesla Full Self-Driving v14.2.2.2, which is the most recent iteration released, is very close to this sentient feeling. However, there are more things that need to be improved, and logic appears to be in the future plans to help with decision-making in general, alongside other refinements and features.
On Thursday evening, Elluswamy revealed that some of the reasoning features have already been rolled out, confirming that it has been added to navigation route changes during construction, as well as with parking options.
He added that “more and more reasoning will ship in Q1.”
🚨 Tesla’s Ashok Elluswamy reveals Nav decisions when encountering construction and parking options contain “some elements of reasoning”
More uses of reasoning will be shipped later this quarter, a big tidbit of info as we wait v14.3 https://t.co/jty8llgsKM
— TESLARATI (@Teslarati) January 9, 2026
Interestingly, parking improvements were hinted at being added in the initial rollout of v14.2 several months ago. These had not rolled out to vehicles quite yet, as they were listed under the future improvements portion of the release notes, but it appears things have already started to make their way to cars in a limited fashion.
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
As reasoning is more involved in more of the Full Self-Driving suite, it is likely we will see cars make better decisions in terms of routing and navigation, which is a big complaint of many owners (including me).
Additionally, the operation as a whole should be smoother and more comfortable to owners, which is hard to believe considering how good it is already. Nevertheless, there are absolutely improvements that need to be made before Tesla can introduce completely unsupervised FSD.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”
News
Tesla earns top honors at MotorTrend’s SDV Innovator Awards
MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.
As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla leaders and engineers recognized
The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.
Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.
Tesla’s software-first strategy
While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.
This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.