Connect with us

News

SpaceX Falcon booster completes 10th launch and landing in 19 months

Published

on

Falcon 9 booster B1058 has successfully completed SpaceX’s Transporter-3 mission, acing its tenth orbital-class launch and landing in record time in the process.

The rocket lifted off as planned from Cape Canaveral Space Force Station (CCSFS) Launch Complex 40 (LC-40) at 10:25 am EST (15:25 UTC), Thursday, January 13th with 105 small satellites in tow, marking SpaceX’s third dedicated Smallsat Rideshare Program launch since January 2021. Beginning in 2022, the company aims to conduct three such rideshare launches annually, operating Falcon 9 a bit like an orbital bus service with the capacity for hundreds of small satellites from virtually any person, institution, or company on Earth – all for the unprecedentedly low price of approximately $5,000 per kilogram.

Falcon 9 B1058 aces its tenth launch and landing. (Richard Angle)

As such, it’s no surprise that SpaceX’s Smallsat Rideshare Program has received as much demand as it has. While relatively insignificant in the scope of the rest of the company’s substantial launch and services revenue, SpaceX has now safely delivered 323 small satellites to orbit for 100+ customers with just three dedicated Transporter missions. As an example, that means that in less than 12 months, SpaceX has launched about three times as many small satellites as dedicated small satellite launch company Rocket Lab has launched in the last four years. It’s no surprise, then, that Rocket Lab has already announced plans to develop a far larger, more reusable rocket after just 20 successful Electron launches.

Meanwhile, as dozens of other startups work on similar small rockets that aim to launch around 500-1500 kg to low Earth orbit (LEO), SpaceX – who began its existence developing the much smaller Falcon 1 rocket – almost immediately abandoned small rockets to focus on the much larger Falcon 9 and Falcon Heavy vehicles. Thanks to reusability, even a moderately loaded two-stage Falcon 9 with a flight-proven booster almost certainly costs SpaceX several times less per kilogram launched than a fully-loaded Falcon 1.

The booster that launched Transporter-3 is a perfect example. Depending on how one measures it, the launch likely cost SpaceX between $15M and $30M to deliver 105 satellites – likely weighing 3-4 tons total – to sun-synchronous orbit (SSO). SpaceX charges customers a fixed price of $1 million for a 200 kg (440 lb) slot on a Transporter mission, meaning that a 4-ton payload would theoretically net the company $20M. In comparison, in 2005, SpaceX was selling Falcon 1 – designed to launch 1 ton to LEO and ~400 kg to SSO – for the equivalent of around $8 million today. In other words, Falcon 1 customers would have paid about $20,000/kg versus $5,000/kg for a slot on a reusable Falcon 9.

B1058 has supported five Starlink launches. (Richard Angle)
B1058 debuted by safely sending two astronauts in orbit on SpaceX’s first crewed launch ever. (SpaceX)

The kicker: Transporter-3 was Falcon 9 B1058’s tenth orbital-class launch in just 19 months, averaging one launch every 59 days. Technically, before a major downtick in SpaceX launch activity beginning in mid-2021, B1058 had actually managed eight launches in less than a year – one launch every ~45 days. Transporter-3 isn’t even its first dedicated rideshare mission – the same booster launched another 133 customer smallsats on Transporter-1 almost exactly a year ago. B1058 has also launched two astronauts, two Dragons, a South Korean geostationary communications satellite, and approximately 290 Starlink spacecraft, amounting to around 120 tons (~260,000 lb) of payload delivered to orbit in a year and half – roughly equivalent to an entire Saturn V launch to low Earth orbit for a tiny fraction of even the marginal cost of the giant Moon rocket.

SpaceX has plans for another two Transporter rideshare launches later this year. The company has as many as three more Falcon 9 launches scheduled for the second half of January, including Starlink 4-6 on January 17th and Italy’s CSG-2 Earth observation satellite on January 27th. Starlink 4-7 is expected to launch around the same time as CSG-2.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading